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Development of Superconducting Technology for
Inertial Guidance, Gravity Survey, and
Fundamental Gravity Experiments

1. INTRODUCTION

The Einstein Equivalence Principle states that a local measurement can not distin-
guish gravity from acceleration. Thus, one must measure the difference between at least
two distinct points to separate the effect of gravity. However, gravity is a weak force. In
precision laboratory experiments, the variation in gravity with the motion of even a large
gravity source is small compared to the natural and man-made accelerations experienced
on the floor of a building. In gravity survey, the change in gravity due to geological-scale
mass fluctuations is small compared to the accelerations experienced in moving vehicle.
Thus, differential measurements always involve subtracting two large acceleration signals
to recover a small gravity signal. This requires very stable and very high resolution accel-
eration measurements. Inertial navigation is also limited by the resolution and stability of
accelerometers. It is limited as well by the Equivalence Principle: In order to navigate pre-
cisely, one must be able to distinguish local gravity from acceleration with respect to the
inertial frame. This can be done either by using an instrument that measures the local

gravity in real time, or by knowing the local gravity a priori from a gravity survey.

A fundamental limit on the resolution of accelerometers is imposed by the
Fluctuation-Dissipation Theorem of statistical mechanics: Any dissipation in a system
causes random fluctuations in the variables describing its state. The fluctuations are com-
monly known as Johnson noise in electrical systems and Brownian motion in mechanical
systems. Their amplitude is proportional to the square root of temperature. From a tech-
nical standpoint, it is relatively straightforward to reduce the temperature by approximate-

ly two orders of magnitude by using liquid helium, the substance with the lowest boiling




point (4.2 K). With this reduction in temperature, one could expect to reduce the inherent
noise by one order of magnitude. However, through judicious use of the low temperature
properties of materials, the reduction in noise can be much greater: Many dissipation
mechanisms are thermally activated, and are consequently frozen out at these tempera-
tures. In low frequency electrical systems, the use of superconducting materials can effec-
tively eliminate dissipation altogether. Furthermore, some of the more subtle properties of
superconductors have been used to create the Superconducting Quantum Interference De-
vice (SQUID), which can be used as an extremely low noise, low impedance, high gain
magnetic flux-to-voltage converter. SQUIDs with energy resolution close to the Heisen-

berg uncertainty (AE At < A/27) limit have been demonstrated.

Reducing the temperature also facilitates the attainment of high stability. In me-
chanical elements, temperature coefficients of mechanical properties are typically much
smaller at 4.2 K. For example, the thermal coefficient of expansion for most materials is
three to four orders of magnitude lower than at room temperature. Furthermore, me-
chanical creep, which is a result of thermally activated processes, is almost entirely frozen
out. In electrical systems, one can take advantage of the fact that the flux trapped in a
closed superconducting loop is perfectly constant. For example, a superconducting mass
may be levitated above a superconducting loop by trapping an appropriately large flux in
the loop. The effective spring constant of the system is determined only by the geometry
of the system and the flux, and hence is quite stable. (The temperature variation of the pe-
netration depth, the effective depth to which flux penetrates into a superconductor, will af-
fect the geometry, giving the spring constant some temperature dependence). One can
also use the stability of flux trapped in superconducting circuits to create a highly stable

displacement sensor.

Thus, cryogenic instruments have the potential for greatly improving our ability to
measure inertial acceleration and gravity. This will better our knowledge of density fluc-

tuations in the earth's crust, through improved gravity mapping, and our knowledge of



-gravity itself, through improved precision tests of the laws of gravity. Indeed, the most

sensitive gravity gradiometer is currently the superconducting gravity gradiometer (SGG)
developed at the University of Maryland. It has performed the most precise test of the in-

verse square law of gravity at laboratory length scales (~ 1 m).

This report covers work on three aspects of superconducting inerﬁal technology
funded by the USAF/PL under this contract. The first is the Superconducting Six-axis Ac-
celerometer (SSA). This instrument has a single, fully magnetically levitated proof mass.
Six sﬁperconducting ac inductance bridges are configured to measure the relative displace-
ment of the proof mass in all six degrees of freedom. The SSA can potentially provide ac-
celeration measurements in all six degrees of freedom with several orders of magnitude
lower noise than conventional instruments with a relatively compact sensor (~ 10 cm, ex-
cluding dewar vessel). The second aspect covered is the development of the Supercon-
ducting AC Gravity Gradiometer (SAGG). This device is similar to a single axis of the
Superconducting Gravity Gradiometer (SGG) developed with NASA funding, except that
it uses a superconducting ac bridge to sense the gravity gradient. This technique has cer-
tain advantages, particularly for applications in which the gradiometer must be moved,
such as in gravity survey. The final aspect is the precision test of the inverse square law of
gravity, which was performed using the SGG. Although NASA funded the development
of the SGG, this contract funded the fundamental gravity experiment performed with the

instrument.




2. SUPERCONDUCTING SIX-AXIS ACCELEROMETER

2.1 Introduction

2.1.1 Motivation: Applications

The initial impetus for the invention of the Superconducting Six-Axis Accelerome-
ter (SSA) came from the requirements of the Superconducting Gravity Gradiometer
(SGG). The SGG consists of six single-axis accelerometers mounted on a precision cube,
with the sensitive axes normal to the face of the cube. By using sensing circuits that mea-
sure the differential displacement between pairs of proof masses on opposite sides of the
cube, the device measures the gravity gradient along three orthogonal axes. With proper
tuning, each sensing circuit can be made to reject the acceleration of the device along that
axis. However, limitations on the precision with which the device can be fabricated give
rise to non-parallelism and non-collinearity between the sensitive axes of accelerometer
pairs. Imperfect parallelism causes sensitivity of each gradiometer axis to accelerations
along the other two axes. Imperfect collinearity causes sensitivity to angular accelerations
about the other two axes (Chan and Paik, 1987). Thus, the acceleration of the gradiome-
ter platform in all six degrees of freedom need to be known so that these errors can be re-
moved. The compact, symmetrical design of the SSA arose from the desire to fit it inside
the mounting cube of the SGG, in such a way that the center of mass of the SSA proof
mass coincided with the center of mass of the SGG. In this way, the SSA measures the

necessary components of the acceleration directly.

For many applications of the gradiometer, nonlinearity in the sensitivity to accel-
eration may make the removal of these error terms difficult. In these cases, it is desirable
to stabilize the platform using the information from the SSA. For this reason, the SSA
uses a displacement sensing scheme somewhat different from the SGG. The key compo-

nent in both sensing circuits is a SQUID, which is inherently a flux-to-voltage converter in
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which the voltage is a periodic function of flux. Commercial versions use feedback to
linearize the response. However, if the signal exceeds the slew rate of the feedback elec-
tronics, they can temporarily "lose lock", and re-lock onto a different cycle, causing a step
in the output. Such a step is problematical when it occurs in a platform feedback loop.
Theoretically, it could be removed through digital processing, but that has not yet been
demonstrated. The SSA uses an ac sensing scheme in which the signal from the SQUID is

demodulated, so steps in the dc level appear only as pulses in the output.

Because of its suitability as a readout device for six-axis platform control, the SSA

“has other potential applications where extremely quiet platforms are required. For exam-

ple, the seismic noise on even the quietest passively-stabilized platforms exceeds the in-
strument noise of state-of-the-art conventional accelerometers. In order to be able to
measure the instrument noise of these devices, one must stabilize the platform using accel-
erometers with lower noise than the devices under test. Another example is the stabilized
platforms that will support the end masses in laser interferometer gravitational ‘wave an-
tennas such as LIGO (Robertson, 1991). The SSA could also be used as a sensitive iner-
tial navigation system, which, when combined with a GPS receiver, could be used for
gravity survey. Because the SSA gives acceleration in all six degrees of freedom, it ap-
pears feasible to extract the full gravity vector from the data. A paper giving a briefer,
more intuitive description of the SSA and covering some of its applications is included as

Appendix A.

2.1.2 Principle of operation

The key component of SSA is its proof mass, shown in Figure 1. It may be
thought of as three orthogonal, intersecting square slabs of niobium (Nb). The proof mass
fits into a housing with the same shape and slightly larger dimensions, so that when the
proof mass is centered in the housing there is a ~ 0.3 mm gap between the two on all

sides. On each inner surface of the housing (except the narrow cruciform ones), there are
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Figure 1: SSA proof mass. It consists of 3 orthogonal square slabs of niobium, 50.20 mm
(1.976 in) on a side and 2.40 mm (0.094 in) thick. It is fabricated as a composite structure
of four interlocking pieces.

one or two flat, spiral superconducting coils. The superconducting proof mass excludes
all flux, confining the field to the gap. Consequently, the inductance of each coil is a func-
tion of the gap. Twenty-four of these coils are connected to form six four-coil inductance
bridges. A transformer couples the signal from a sinusoidal current source across one di-
agonal of the bridge, and the input coil of a SQUID sensor is connected across the other
diagonal. The inductance bridges are arranged so that, if the proof mass is centered, the
inductances of the coils are equal (ignoring geometrical imperfections) and the bridges are
all "balanced" — no oscillator current passes through the SQUID. If the proof mass is
displaced in one degree of freedom, the mismatch in the inductors of the corresponding

bridge circuit causes part of the oscillator current to pass through its SQUID. The output



of the SQUID is demodulated with a lock-in amplifier to produce a voltage proportional

to the displacement of the proof mass.

Flux is excluded from the interior of superconductors because a field impinging on
the body induces surface currents which screen the interior. The surface currents repel the
currents that induced the field. Hence, by storing persistent current through coils below
the proof mass, we can levitate it against gravity. By storing additional currents, we can
also generate a torque on it. In versions of the device with two coils per face, the addi-
tional 24 coils are connected to form 6 circuits, each of which provides force (or torque)
in a separate degree of freedom. In the version with only one coil per face, dc currents are
stored through the proper arms of the sensing circuit to provide the levitation force. In
both cases, each circuit also contains a transformer, through which a feedback current can
be applied. A feedback controller uses the bridge output signal to generate the current

necessary to center the proof mass.




2.2 Development History

2.2.1 Modell

The first version of the SSA was constructed under the previous contract (Paik et
al., 1989). It had two coils on each interior surface. The 48 coils were connected to form
6 sensing and 6 levitation circuits. The coil forms were designed so that the sensing coils
were slightly closer to the proof mass than the levitation coils. This provides some im-
provement in performance, because moving the levitation coils away from the proof mass

~reduces the effective spring constant, while moving the sensing coils closer improves the
displacement sensitivity. Unfortunately, having two planes substantially complicated fab-
rication. Because of difficulties in trying to produce the coils with pure niobium wire, they
were eventually wound with stronger niobium-titanium alloy wire. However, alloy super-
conductors are Type II, meaning they do not exhibit complete flux exclusion. Some flux
creep, which can cause low frequency noise, is expected. The coil forms for this model
were machined from Ti6Al4V, a standard titanium alloy. Perhaps because of some unusu-
al heat treatment, the particular batch used for the coil forms had an anomalously high su-
perconducting transition temperature, slightly greater than the bath temperature. Because
a coil on a superconducting form produces almost no levitation field, the device had the
mildly annoying feature that it required a heater and a temperature controller. For econo-
my, the first version used only a single SQUID coupled to all 6 levitation circuits in series.
Different circuits were driven at different frequencies. However, the drive frequencies
must be separated by more than twice the desired accelerometer bandwidth, so the highest
frequency must be more than twelve times that bandwidth above the lowest. Unfortunate-
ly, commercially available SQUIDs are slew rate limited above approximately 100 Hz.
The maximum tolerable signal amplitude drops rapidly with frequency above this. In addi-
tion, having all the circuits connected together allowed resonances that were difficult to

disentangle.



In spite of these difficulties, Model I ran successfully, demonstrating levitation and
sensing in all six degrees of freedom. Many of the essential results of these tests have
been reported previously. However, substantial additional testing was performed. The
transfer function matrix, including in-line (diagonal) and cross coupling (off-diagonal)
terms, was measured and found to match the calculated transfer function matrix quite well.
A set of simple single-input, single-output (SISO) PID (proportional, integral, differential)
controllers was built and tested, and closed-loop transfer functions were measured for in-
dividual axes. From the analysis of the transfer function matrix, a theoretical design of a
more sophisticated controller was developed. This multiple-input, multiple-output con-
troller (MIMO) would strongly suppress the cross-terms in the closed-loop transfer func-

tion matrix, as well as increasing the bandwidth and the damping of the in-line terms.

2.2.2 Modelll

At the start of the period, the primary goal of the SSA project was the develop-
ment of a device suitable for six-axis platform control on the Superconducting Gravity
Gradiometer Mission (SGGM). In the SGGM, a satellite containing an advanced SGG
was to be placed in a low Earth orbit to map the gravity field of the entire globe with high
accuracy ( ~ 2 mgal ) and fine spatial resotution ( 50 - 100 km ). For space missions, high
reliability and high sensitivity are the major concerns. It was realized that the number of
coils could be reduced by a factor of two, and the number of connections by almost as
much, if additional heat switches were added to the sensing circuit to allow dc levitation
current to be stored in the proper path. Also, since this scheme used only one coil per coil
form face, the entire area could be used for sensing, which increases the sensitivity. Al-
though the high currents needed in a terrestrial laboratory test would produce additional
error terms in this device, in orbit, where much smaller currents would be required, these

would not be as significant.




Modeling of the proof mass dynamics indicated that the open loop transfer func-
tion matrix is similar to that of the first version, except that an additional set of off-
diagonal elements appear. Although these terms are somewhat larger than the other off-
diagonal terms, further calculation indicated that a modification of the control design

would suppress them sufficiently in the closed-loop transfer functions.

In constructing the second version of the device, we incorporated some of the im-
provements suggested by tests of the previous version. The coil forms were machined
from TiZr alloy, which was measured to have a T, well below the operating temperature of
the device. Separate SQUIDs were used for each sensing circuit. In order to avoid the
possibility of drifts caused by flux creep, it was decided that the coils would be made from
pure niobium. However, in spite of significant work to improve the quality, wire breakage
continued to hamper progress. Finally, we invented a new type of wire, with a NbTi core
and a Nb cladding. Since currents travel on the surface of a superconductor, the electrical
properties are determined by the cladding, but the mechanical properties of this composite

wire should be dominated by the strong NbTi core.

2.2.3 Model b

At this point, the immediate goals of the SGG program had shifted to the demon-
stration of airborne gravity survey. In aerial survey the amplitude of platform motion is
quite large, and the need for a sensitive motion sensor is even more pressing. However, in
this application, where large currents are needed to cancel the one g, field, the accel-
erometer scheme with separate levitation and sensing circuits has important advantages.
For example, when large levitation currents are used, large sensing currents are needed to
achieve high coupling. With large ac currents, low frequency amplitude noise, which
couples through coil mismatch, becomes a significant problem. The effect is much smaller

with separate levitation and sensing circuits. Since we were about to rewind the coils with
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the new composite wire, we decided to rewind them with separate levitation and sensing

coils.

The latest version of the SSA, in addition to the new composite wire, had several
other enhancements. The feedback transformers were redesigned to reduce the resonance
frequency of the translational axes. The relative polarity of the levitation and sensing coils
on each face was measured and the circuits were wired in such a way as to cancel the ef-
fect of mutual inductance. A more compact design for the connection box was produced.
On the translational circuits, Quantum Design rf SQUIDs were replaced by BTI tf
SQUIDs, which showed greater immunity to rf interference in the SGG. A set of more
stable voltage-to-current converters were produced for exciting the bridge. After some
additional improvement in the theoretical design, a very stable, low-noise analog imple-

mentation of the controller design was built.




2.3 Mechanical Elements

2.3.1 SSA Sensor package

The components of the present SSA sensor are shown in Figure 2. The overall
size is determined by the precision mounting cube, 101.60 mm (4.000 in) on a side, which

is identical to the one used in the SGG. Six identical niobium pieces, which fit into holes

/— Coil Form Holder
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Figure 2: Components of the SSA sensor, shown partially disassembled. The precision
cube is 101.60 mm (4.000 in) on a side. A niobium coil form holder fits into the hole on
each face of the precision cube. They form a cubical cavity 50.80 mm (2.000 in) on a side.
The cubical coil forms fit into the eight corners of this cavity. They in turn form a cavity

in the shape of the proof mass, but 0.6 mm (0.024 in) larger in all dimensions. There are
single layer spiral coils on all interior faces of the coil forms.
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bored in the center of each face of the mounting cube, create the cubical enclosure, 50.8
mm (2.000 in) on a side, that houses the coil forms and the proof mass. The eight coil
forms fit into the corners of enclosure, forming a cavity that fits around the proof mass
with a ~ 0.3 mm (0.012 in) gap. Two flat, spiral, single layer coils are wound concentri-
cally on each interior face of the proof mass. The inner coil is used for displacement sens-
ing and the outer coil is used for levitation. Four interlocking plates 2.36 mm (0.093 in)

thick form the proof mass, which sits at the center of the device.

2.3.2 Materials considerations

In almost any sophisticated device, proper operation depends critically on the
proper choice of materials. The precision mounting cube must be stiff, to minimize deflec-
tion under the weight of the gradiometer accelerometers. It is also useful that it be hard,
so that it can easily be ground to give the high degree of parallelism and orthogonality re-
quired to minimize errors in the gradiometer. For this reason, it is made of Ti6Al4V, a
standard aerospace alloy. The coil forms are also of titanium alloy because of the unusual-
ly high resistivity of titanium alloys. Because the ac displacement sensing scheme of the
SSA requires its input to be continuously connected to external electronics, it was feared
that the rf noise coupled through these connections would interfere with the operation of
the very rf-sensitive SQUIDs. For this reason, the coil forms of the SSA are metal rather
than ceramic, as is used in the SGG. However, a very resistive metal is needed so that the
dissipation is low at the bridge drive frequency. Titanium alloys are among the most re-
sistive of common structural metals. The thermal contraction of titanium alloy is also well
matched to that of niobium. As mentioned in Section 2.2.2, the original Ti6Al4V alloy

was replaced by Ti36Zr, which has a lower superconducting transition temperature.

Most other elements of the SSA sensor, including the enclosure walls, the proof
mass, the junction boxes, and the wires that make up the circuits, are of niobium. Nio-

bium is used because it is the material with the highest first critical field, /,, the maximum
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field at which magnetic flux is completely excluded from the interior. Complete flux ex-
clusion is used in the walls and the junction boxes to provide shielding at low frequencies,
in the proof mass to allow stable levitation, and in the circuits to allow truly persistent cur-
rents. Both the yield strength and the ultimate strength of niobium increase substantially
with decreasing temperature, but unfortunately, the yield strength rises more rapidly, so at
some temperature, the metal will break before yielding. This is not a problem in the large
structural elements of the SSA, but some of the fine wires suffer stress during cool down
and will break if they are in the brittle state while cooling. The ductile-to-brittle transition
temperature of niobium is strongly dependent on the concentration of interstitial impurities
such as hydrogen and oxygen. Problems with wire breakage on the SSA and SGG have
been traced to a change in the manufacturer’s fabrication process in which they introduced
an air anneal. Proper control of the fabrication greatly ameliorated this problem. To
eliminate it entirely, a new type of wire was invented, as mentioned in Section 2.2.2, con-
sisting of a NbTi core surrounded by a pure niobium cladding. Although there was no
physical reason why the wire itself would not give the expected properties, it was not
known whether good spot welds could be made with it. However, test welds with this
wire exhibited higher critical currents (maximum superconducting current) than with either

NbTi or pure Nb wire.

Several important improvements were made in the fabrication of the superconduct-
ing coils. In order improve adhesion and eliminate shorts to ground, the coil forms are
now cleaned and etched using a process developed by the aerospace industry, and coated
with an epoxy specifically developed for strong adhesion at cryogenic temperatures. After
machining the layer to the correct height, the coils are wound on it. Both coils are wound
in the same plane, as in the SGG; this greatly simplifies fabrication. Many additional im-
provements in the coil winding process have been made, so that the uniformity and match-
ing of the coils are now limited by fluctuations in the diameter of the wire, a factor that is

apparently difficult for the manufacturer to control with greater accuracy.
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2.3.3 Ancillary hardware

A cryostat like the one shown schematically in Figure 3, provides the necessary en-
vironment for the operation of the SSA. The sensor is suspended in a vacuum can im-
mersed in liquid helium. The vacuum isolates the SSA from thermal and acoustic noise
associated with the boiling helium. Without gas in the gap, the damping of the proof mass

motion is small enough that the associated Brownian motion noise is negligible compared

Vertical Voice-coil
Shaker

Magnet Holder for

Mounting Block f
ounting Block for Horizontal Actuators

Warm Accelerometers o7
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T
A
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Dewar @
]
l T——SSA
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Figure 3: Schematic diagram of the SSA in its cryostat.
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to the SQUID amplifier noise. The SSA is suspended by a long, stiff rod attached to a
long rubber spring, which provides isolation, above its resonance frequency of 1.8 Hz,
from the seismic noise of the laboratory floor. The presence of strong peaks in the seismic
noise spectrum, particularly near the proof mass resonance frequency, would limit the
achievable sensitivity if there were no seismic isolation. A set of three standard room tem-
perature accelerometers (Sundstrand QA-900) mounted orthogonally in a block between
the rubber spring and the suspension rod allow an approximate calibration of the device.
Also attached to this block is a horizontal aluminum cross with permanent magnets
mounted on the end of each of the four arms. The cross member and accelerometer
mounting block are suspended from the rubber spring by an aluminum shaft that holds a
fifth permanent magnet. A pair of Helmholtz coils is centered around each magnet, and
fixed to the dewar. Each magnet and coil set form a voice-coil actuator. With the five ac-
tuators, the block can be shaken vertically, rotated about the vertical axis, and, well below

the pendulum frequency, translated in the two horizontal directions.
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2.4 Levitation and Proof Mass Dynamics

2.4.1 Dynamics of Model Ii

Although the Model II SSA uses the same mechanical components as the Model I
and Ib, and a displacement sensing circuit almost identical to that of Model Ib, its levita-
tion scheme, and thus the dynamics of the proof mass, are different. Figures 4a and b
show the sensing/levitation circuits for the translational and rotational degrees of freedom,
respectively. The circuits are identical except for the placement of heat switches and for
the relative location of the coils. The small inset in Figure 4a shows the location of the
coils in the z translational circuit. The two coils on the upper (+z) side of the proof mass,
L, and L, are represented by solid circles, and the two coils on the lower (-z) side of the
proof mass, L, and ,, are represented by dashed circles. The subscripts correspond to the
" number of the quadrant in the xy plane. To levitate the proof mass, current is applied
through the current leads while heat switches 2, 3, and 4 are held open to prevent current
from flowing through the upper coils and the SQUID input coil. Then heat switch 1 is
momentarily held open to force the current to flow along the desired path. After heat
switch 1 cools, the current source is removed and the power to the other heat switches is
turned off. As the figure shows, the feedback current, 7, adds to the levitation current
through the same transformer that couples the sensing current into the bridge. The trans-
former has separate primaries for the sensing and feedback currents because different turns
ratios are required. This scheme also avoids the need for precisely adding two quite dif-

ferent signals with warm electronics.

Applying a torque with the rotational circuit is slightly more complicated. We

must first hold open heat switches 1, 3 and 4 in Figure 4b and store the current Ié’ using
heat switch 2 and the associated current leads. This is a bias current which produces no

dc force on the proof mass because an equal current flows through all four coils. Holding

open heat switches 3 and 4 while storing current with heat switch 1 and the associated
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Figure 4: Sensing/levitation circuit for the Model II SSA. hsl, ..., hs4 denote the four
heat switches and L, ..., L, denote the four sensing/levitation coils. The inset in each
figure shows the relative location of the coils in the xy plane. Dashed circles represent
coils below the proof mass, and solid circles represent coils above it.
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current leads then produces a torquing current, /... If the currents have the senses

shown in the figure, /. adds to / o through coils L, and L, and subtracts from it through

> < torque

coils L, and L,. By considering the relative positions of the coils shown in the inset of the
figure, it can be seen that increasing the current though coils L, and L, increases the torque
in the right-handed sense about the y axis, while increasing the current through coils L,
and L, increases the torque in the left-handed sense. Thus, 7, as shown in the figure
produces a net torque about the y axis in the right-handed sense. As with the translational
circuit, the feedback current and sensing current couple to the circuit through the same

transformer.

From these circuits we can extract the proof mass dynamics. The linearized equa-
tions of motion of a proof mass inside a housing were derived in Parke (1990). The equa-

tions may be written

HH:(a ] (2-1)

m o

where the 3-vectors a and a are given by

a= —i1-207 X1’ - xr’ -0 x (@7 xr")-Vy,

1

o= —(i)”—--z- H % 0F + o x 07, (2-2)

and where

r” = the position of the housing with respect to the origin of the inertial reference

frame,
r” = the position of the proof mass with respect to the housing,

®” = the angular velocity of the housing with respect to inertial reference frame,
®” = the angular velocity of the proof mass with respect to the housing,

0% = the angular position of the proof mass with respect to the housing (It is re-

lated to the rotation matrix R” through R” = e®’, where J is generator of

the antisymmetric matrix.),




m ={m m m J J, J}', where mis the mass of the proof mass and J is its
moment of inertia (It is assumed that the principal axes of the proof mass
coincide with the axes of the proof mass frame of reference, and that the
body is symmetric, so all three diagonal components of the moment of iner-

tia tensor are equal ),

eP
with respect to the housing,

P
r o .. . .
r = ( ) a 6-vector describing the position and orientation of the proof mass

V' = the potential energy internal to the accelerometer.

Note that the division symbol in Eq. (2-1) represents term-by-term division (i.e.
c=a/bimplies c,=a,/ b.) Inthe SSA, Vs electromagnetic potential energy due to the
current flowing within the device. Because the circuits in the Model II SSA are different

from those of the Model I SSA, V" will be different.

Calculation of the potential V, though tedious, is conceptually simple. For the sake
of brevity, we will ignore the effect of the sensing current, which would appear only as an
additional term in the expression for the resonance frequency. In reality, technical consid-
erations constrain the sensing currents to values low enough that they have no significant
effects on the dynamics. Solving the circuit equations (current conservation into nodes,
flux conservation through loops) gives a set of equations for the current in each branch, 7,
in terms of the inductances, L, and the initial currents and inductances, L, and /,,, respec-
tively, when the proof mass is centered in the housing. Here ie {1, 2, 3, 4, tran,
SQUID}, where L,, ..., L, are as shown in Figure 4, L__is the secondary inductance of the
bridge drive/feedback transformer, and L, is the effective inductance of the SQUID in-
put coil, as reflected through the matching transformer. The potential energy due to the

6
currents in the circuit is then simply X Z;/;. The inductances of the sensing/levitation coils
=

are a function of proof mass position. This functional dependence is approximated as an

expansion about the centered inductance:
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L=Lo +7\x—-y—x2—E92, (2-3)
2 2
where A, 7, and B are coefficients. The displacement of the center of the coil, x, in the

coordinate system of the proof mass, is related to the proof mass position and orientation

by

x= (R (x5~ r"). (2-4)
Here x{ is the position of the coil in the housing reference frame. Substituting Eq. (2-3)
into the expression for the potential energy of each circuit, then substituting the proper
components of x (from Eq. (2-4)) and 67 into the result, and summing over all the circuits
yields a rather lengthy expression for 7 in terms of the proof mass position and orienta-
tion. Performing a Taylor expansion of this to second order gives an expression of the

form
V=vg+r-vi+r-Vs-r, (2—5)

where v, is a scalar, v, 1s a 6-vector, and V, is a 6 X 6 matrix.

The expression for the potential, Eq. (2-5), can then be substituted in the equa-

tions of motion, Eq. (2-1). After some rearrangement, this gives
i+Q-r=| * |-v (2-6)
o 1

This is just a somewhat generalized form of the equation for a harmonic oscillator. The

vector v, gives a set of constant forces: Vv, = { foo» foor Joo 0. 0, O }T, where
foc =A(1£)2. The translational levitation current, /2, is chosen so that f,. cancels the

component of the gravity vector along each axis. (Here, f,. is taken to be equal for all
three axes, but in reality they will differ because of imperfect alignment of the SSA with
respect to vertical.) In contrast to the Model I, in the Model II f,,. is independent of the
bias current in the rotational circuits, because equal currents flow through the upper and

lower coils in the rotational circuits when the proof mass is centered.




The matrix Q can be written in terms of four blocks:

o w21 ZD—CS
= , (2-7)
fDCs @3+ 0I-L1
where
I =3 X3 identity matrix,
1 =3 X3 ones matrix,
0 -1 1
S =| 1 0 -1 [isthe unit anti-symmetric matrix,
-1 1 0

¢ =SBy,

d = the proof mass - coil gap.
The origin of the housing coordinate system is fixed at the geometrical center of the SSA,
and the planes formed by the axes are parallel to the coils. In this coordinate system, one
of the coordinates of a coil center has magnitude equal to d plus half the proof mass thick-

ness. The magnitude of the other two coordinates is ¢. The proof mass resonance fre-
quencies in the translational and rotational degrees of freedom, w, and w, respectively are

given by

2 1[(A*@Lo+Ls+L) ) 02, (A 1) ] _
©r= [((L0+L5)(LO+L6)+’Y &) +(L 2 (I ) ’ (2-8)

mé:&[z(%’\ +dA+c y+[3)(1’) +((Li2_fzs)+dA+c27+B)(IQ)2]. (2-9)

Although computing the equations of motion is significantly more difficult for
Model II than for Model I, the results are very similar. The most important difference is

the appeérance of the term { in the Q matrix( (Eq. 2-7). The presence of these off-
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diagonal elements indicates an additional cross-coupling between rotational degrees of

freedom.

The analysis presented above does not include the effect of the feedback current.
If we add the feedback currents into the initial current through the transformer secondary,
we get, after dropping all terms that are second order in r or I, an additional term in

Eq. (2-6) of the form K-I, where L is the vector of feedback currents and K is a diagonal

matrix:
kI 0
K=" 2-10
(e (2-10)
where
4ALP{]I,
kr=—p—>
. _ 2cALphld
r= J .

Here, p’: and p{, are the turns ratios of the translational and rotational feedback transform-

ers, respectively.

2.4.2 Dynamics of Model |l and Ib

One of the major benefits of operating the SSA in space is that the levitation cur-
rents can be greatly reduced, thereby reducing the resonance frequency, and greatly en-
hancing the sensitivity. For terrestrial operation, it is helpful to minimize the resonance
frequency within the constraints of the design. For an SSA with separate sensing and le-
vitation circuits, the resonance frequency in a translational degree of freedom is (Paik et

al., 1989)

2_4(_4A* Y\ n2 _




where we have ignored the effect of the relatively small sensing currents and the rotational
bias current. Note that we can reduce ®, by making the secondary inductance of the feed-
back transformer, L,, larger, until the first term in Eq. (2-11) is small compared to the se-
cond. The design of the latest version of the SSA takes advantage of this fact: L,is

chosen so that the first term is approximately one sixth the second.

To understand other factors that affect the resonance frequency, it is helpful to ex-

amine the simple case given by Llim 7. The translational levitation current, I, is fixed by
3o

the requirement that the dc force that it generates exactly cancels the component of the

proof mass weight along the sensitive axis, mg,cos¢. Normally, the SSA is in "umbrella"

orientation, such that cos¢ = 1/ J/3 for all three axes. The force balance can be written as

foc = 2A(" = TEE (2-12)

S3

Setting the first term to zero and substituting Eq. (2-12) gives an expression for the mini-

mum resonance frequency in the limit of very large L,

2 _ SV

w; .
JIA

Equation (2-13) has the form of the pendulum frequency equation, with an effec-

(2-13)

tive pendulum length of £ = A/y. Thus, to reduce the resonance frequency further, & must
be maximized. One way is increase the gap, d, because & increases monotonically with d.
However, displacement sensitivity decreases with increasing gap. Furthermore, because
the coils are arranged on the surfaces of a cube, increasing d (while keeping the coil di-
ameter fixed) reduces the distance between the edges of coils on different faces of the
cube. This distance must be large compared to d to keep the inductive coupling between

circuits small.
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Given the constraints on dimensions, the only other obvious way of decreasing @,
is by changing the coil shape. The effect of shape can be explored in a limited way using a
simple model: If the proof mass is represented by an infinite superconducting plane, and
the turns of the coil are represented by circular current rings in a parallel plane a distance d
away, then the force between them is equal to the force between the current rings and a
set of image rings in a plane a distance d on the other side of the superconducting plane.
This model does not take into account the finite thickness of the wire, and the redistribu-
tion of current along its surface, but these effects are only important when the gap is
smaller than about twice the wire diameter. The model also does not include the effect of
the enclosure walls, which confine the field to a cubical cavity. However, if d is small
compared to the minimum distance between the walls and the outermost turn of the coil,
the model should be reasonably accurate. Inclusion of the effect of the walls would re-
quire finite element analysis software. Under the assumptions of the simple model, A is
twice the force between the current rings and their images, divided by the current squared.
Summing the equation for the force between coaxial rings (Smythe, 1989) over all the

rings and image rings, we obtain

_ m | _ E(m)(m—2) _
A—Zi‘,‘];mod r,r,-[ Km+=20 ] (2-14)

Differentiating with respect to d yields

Y= 2, Zj Hor {[(m = 1)(m =2)r;r; — 2m(m* —m + 1)d*] E(m)

(m—Drir} /7”-;7 (2-15)

+Hm — D[2(1 —=m)rir;+m(m—2)d*1K(m)},

where

47‘1]‘_,'

m>= (r,-+rj)2+(2d)2

and K(m) and E(m) are the complete elliptic integrals of the first and second kinds, respec-

tively. The 7, and r, are the radii of the current rings and their images, respectively.
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Equations (2-13), (2-14), and (2-15) can be used to calculate the minimum resonance

frequency as a function of d for different coil cross sections.

Figure 5 shows the results of such a calculation for three different coil shapes: a
single-layer flat coil, a single-layer solenoid, and a coil with a square cross-section (e,
having equal numbers of turns in the radial and axial directions.) In all cases, the number
of turns and the outside diameter were the same. As can be seen from the figure, these
very different coil shapes give values of £ that differ by at most a factor of two, suggesting
that £ is not a sensitive function of coil geometry. A more thorough study would be need-
ed to confirm this for the general case, but these results for easily manufacturable shapes

are sufficient to conclude that there is little to be gained from changing the shape of the

15}

lambda/gamma, mm

Gap, mm

Figure 5. Effect of coil shape on minimum resonance frequency.
Solid line: single-layer flat coil.
Dashed line: square cross-section coil.
Dash-dot line: single-layer cylindrical coil.
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levitation coils. For this reason, the levitation coils on the most recent version of the SSA

are single-layer spirals.

A comparison of the calculated and measured resonance frequencies and levitation
currents would provide a good check of the accuracy of our model. However, as dis-
cussed in Section 2.7, because of imperfect mating of the pieces making up the enclosure
walls, the gap, d, differs from the design value and from axis to axis. Furthermore, d is

difficult to measure accurately. Therefore, it is better to perform a consistency check.
Using the measured values of I* and I é,‘ , we first calculate the value of d for each axis by

solving the force balance equation,

2
o ()] mes )
2A(d)[(1,) (Ie)] e (2-16)

for d (with A(d) given by Eq. (2—-14), using a numerical root finding scheme. Substituting
these values into Eq. (2-15) and Eq. (2-11) then gives the predicted values of the reso-
nance frequencies. Table 1 shows the results of these computations for the most recent

version of the SSA, and a comparison with the measured values.

On average, the measured resonance frequencies are less than 6% above the pre-

dicted values, primarily because the model does not take into account the fact that the

¥ ¥ r

« ¥ ,
I} (measured), A 4.9351 5.5640 5.4414
I (measured), A 0.0000 2.1240 2.0000
d, um 357 455 416
/27 (calculated), Hz 12.21 15.94 16.05
/2w (measured), Hz 13.31 16.84 16.31

Table 1. Values of the gap inferred from a particular configuration of currents in the
translational circuits, and the resulting resonance frequencies.
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field is confined by the walls of the enclosure. The scatter in the ratio ® /O, cutatea 1S

measured
most likely due to imperfections in the alignment of the SSA with vertical, as well as mis-
match between the inductance parameters of sets of coils caused by the variation of the

wire diameter.
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2.5 Displacement Sensing

2.5.1 Model Ib: design

In designing the sensing circuits for the most recent SSA, a number of consider-
ations were taken into account, and several changes were made to the original design. A
schematic diagram of the sensing circuit is shown in Figure 6. A comparison of this circuit
with that of the sensing circuit of the original SSA shows two obvious changes. First, the
bridge circuit of each axis now has its own SQUID. By reducing the coupling between
channels, it is hoped that the spacing between bridge modulation frequencies can be re-
duced, or that the same frequency can be used by more than one bridge, thus decreasing
the maximum modulation frequency. As mentioned in Section 2.2.1, the dynamic range of
the SQUIDs presently used decreases with frequency, so decreasing the maximum modu-
lation frequency improves the dynamic range of the corresponding axes. The second
change to the circuit is that the current drive of the new circuits is nonresonant; the ca-
pacitor across the primary of the bridge drive transformer has been removed. The reso-
nant bridge drive provided some additional gain in the drive current. However, the gain

was strongly frequency dependent and difficult to calculate accurately. In addition,

Ly L,

Bridge Drive
Transformer 3
Im [ SSSNNY, 0

SQUID
Input Coil

Figure 6: Model Ib sensing circuit. The orientation of the coils in the translational and
rotational circuits are as shown in the insets of Figure 4a and b, respectively.
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Figure 7. Translational sensing circuit for the Model Ib SSA, including coupling to
levitation circuits.

achieving a large drive current is not a problem — other factors limit the amount of drive
current to less than the maximum amplitude of a voltage-to-current converter. Further-
more, the nonresonant circuit is more flexible, easier to operate, and easier to analyze be-
cause the amplitude and phase of the drive current are weakly dependent on frequency
over the range of frequencies normally used. The remaining frequency dependence comes

from the resistance of the core of the bridge drive transformer.

Figure 6 shows an ideal circuit. Because the sensing and levitation coils are in
close proximity, there is some mutual inductance between them. Figure 7 shows the cir-
cuit including the effect of the mutual inductance. The coupling between the sensing and
levitation circuits has two effects. First, when persistent currents are stored in the levita-

tion circuit, they will induce some dc current in the sensing circuit, which will be
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modulated by the motion of the proof masses with respect to the sensing coils. Second,
changes in the levitation current due to motion of the proof mass with respect to the le-
vitation coils will induce corresponding currents in the sensing circuit. Both effects pro-
duce a low frequency signal at the SQUID, particularly near the resonance frequencies of
the proof mass motion.” The first effect can be removed by putting heat switches in each
branch of the sensing circuit, so that the dc current can be purged. However, this does not
eliminate the second coupling mechanism. In addition, heat switches add parasitic induc-
tance, worsening the inherent misbalance of the bridge. If the low frequency signal is
small enough that it does not overload the SQUID, it can be removed in the lock-in ampli-
fier with a high pass filter. Such a filter, though, will add phase shift, which can cause dif-

ficulty for the controller.

The mutual inductance between the levitation and sensing coils can be calculated in
the same way as A and Y (Eq. (2-14) and (2-15)), by modeling the coils as sets of concen-
tric current rings and the proof mass as an infinite superconducting plane. Again, this con-
figuration is equivalent to a set of rings and their mirror images. The image rings are in a
plane parallel to, and a distance 2d from, the plane of the coils. In this case, however,
there are two coplanar sets of rings. Summing the expression for the mutual inductance
between 2 coaxial rings (Smythe, 1989) over all the levitation rings and their images for
each sensing ring, and taking into account the negative sense of the image currents gives
the total mutual inductance between the coils,

M=33 ZMO{ e [ (1252 Jxomco - Em(0)|

- J;_(—g I --”’%"))K(m(zd»—-E(m(zd))]}, (2-17)

where

4rsiriy

m(z) =

2 2
(rs;+ry)” +22




and z is the separation of the two planes of the two rings. The summation over i runs over

all the turns of the sensing coil and the summation over j runs over all the turns of the le-
vitation coil. Written in terms of the coupling constant, k=M [L.L; , and using the val-
ues of d from Table 1 in Eq. (2-17) yields k£ = 0.087, 0.096, and 0.104, for the ro T, andr,

axis, respectively. The SGG also has coil forms with two coils, but these coils are sepa-
rated by a small "dummy" coil. Making the width of the dummy coil several times the
coil-proof mass gap reduces this coupling by more than an order of magnitude. However,
the ratio of the gap to the coil form radius is several times smaller for the SSA, so an
equivalent dummy coil would take up a much larger fraction of the available surface area.
Because of this and the substantial additional cost of the more complex design, this con-

cept was not used in the present version of the SSA.

There is another way of removing the coupling to the levitation circuit: By keeping
track of the polarity of the mutual inductance between the two coils on each face, one can
assemble the levitation circuits so that for each pair of coils that are coupled to a sensing
circuit, the polarities have opposite senses. In this way, the induced currents cancel, to the
degree that the mutual inductances match. This scheme works simply for the coupling to
the levitation circuit. In the rotational levitation circuit, the bias current through each coil
is the same, so its effect will cancel. The torquing current, though, has opposite polarity in
the two branches of the circuit, and so its coupling to the sensing circuit will not cancel.
Fortunately, the dc torquing current are small compared to the levitation and bias currents.
(If the SSA were dimensionally perfect and the coils were perfectly matched, then no dc
torquing currents would be needed.) In recent tests, this coupling caused a signal at the
proof mass resonance on the order of 20 uA. For the BTI SQUIDs, this is a substantial
fraction of the maximum low frequency amplitude, so good isolation at the proof mass

resonance frequency is necessary to avoid saturating the SQUID.

Most of the design parameters of the SSA are set by the geometry of the proof
mass. One free parameter is the outer diameter of the sensing coils (which is also the inner
diameter of the levitation coils). This parameter can be set to minimize the sensing current
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needed to achieve optimum coupling. The accelerometer reaches optimum coupling when
the sensing is current is raised to the point at which the spring constant, &, due to the
sensing current, /, (the current through the secondary of the bridge drive transformer)

equals the spring constant due to the levitation current, k;:
Increasing the sensing current beyond this point reduces the overall sensitivity because the
response of the proof mass to acceleration declines faster with /; than the displacement
sensitivity increases. The translational spring constant due to levitation current is implied
by Eq. (2-11). The levitation current is determined by the force balance condition,
Eq. (2-12). Eliminating the levitation current, we obtain

8A? mge
k= L4 . 2-19
’ (4L0+Lﬂ, Y’) A (2-19)

The spring constant due to the sensing current can be obtained by summing the

forces on the proof mass applied by the current in each sensing coil:

~sgn, (A —¥x:)
2

Fy=Y, I, (2-20)

where sgn, is +1 if the coil is above the proof mass (if the component of the coil position
normal to the plane of the coil is positive) and —1 if it is below. Solving the circuit equa-
tions (conservation of current at nodes, voltages around loops sum to zero) provides the
current, I, through each coil 7 in terms of the inductances in the circuits and the currents
I through the primaries of the bridge drive transformers. Upon substituting Eq. (2-3)
for the coil inductances, Eq. (2-4) for x, in terms of the proof mass position and orienta-
tion, r, yields a set of expressions for /, as functions of r. The results can be simplified if
we express them as a function of the current through the transformer secondary, /. When

the proof mass is centered (r = 0),

Ldr

IS M]osc . (2_2 1)

- Ldr +Ls




L, is the inductances of the transformer secondary, L, is the inductance of a sensing coil
when the proof mass is centered, and M is the mutual inductance of the transformer. Sub-
stituting the expressions for /, and Eq. (2-21) into Eq. (2-20), and taking the derivative
with respect to one of the axes, we obtain an expression for the spring constant as a func-
tion of position and orientation. When the proof mass is centered (r = 0), the expression
for a translational spring constant simplifies to

A2 ¥s ¥s 2
s = 5 Hsrv5is0- 2-2
k (LSQUID+LS+ 2)12. + 21,9 (2-22)

Assuming, for simplicity, that the sensing current in the angular circuits, I, has
the same amplitude and phase as the sensing current in the translational circuits, 7_, substi-
tuting Eq. (2-19) and Eq. (2-22) into Eq. (2-18), and solving for the r.m.s. amplitude of

I, we obtain

) [8A? +y,(4Lo+ L
<]s,opt>=J(LSQU]D+L)[ 1 +Yi(4lo+Lp)] mgg (2-23)

(4Lo+Lp) [A2+Ys(Lspup+Ls)] 3 A,

It is important that /_, not be too large, for the fundamental reason that the field due to
this current must not exceed the first critical field (to avoid a sharp increase in dissipation),
as well as for the practical reason that it becomes more difficult to build a stable ac current
source as the currents become much larger than 1 A. Note that, except for the proof mass
weight, all the variables in Eq. (2-23) are purely functions of geometry. All the important
dimensions are fixed by fundamental or practical considerations except the outer radius of
the sensing coil, 7, which is also the inner radius of the levitation coil. To see how 1, o
depends on the partition of the coil form area between levitation and sensing coils, we plot
it as a function of this radius. Figure 8 shows this plot, with 7, ranging from the inner to
the outer radius of the coil form. Note that there is a minimum at » = 8.5 mm, although
there is relatively little change in 7, over the range r,= 6 to 10 mm. The actual sensing
coil outer radius, 6.32 mm, was chosen to be somewhat smaller than the radius at the

minimum to reduce the required levitation current (which increases with increasing r.)
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Figure 8. The optimum sensing current, the current that produces optimum coupling, as a
function of the outer radius of the sensing coil.

The full expression for the force on the proof mass due to the sensing currents, F,
from which we obtained Eq. (2-22) is rather lengthy, but reduces to zero when the proof
mass is centered. However, this is only true under the assumption that the parameters L,
A, and v, are equal for all the coils. In the real SSA, the wire-wound coils show signifi-
cant variations in their dimensions, particularly the outer radius. For A and 7, the pre-
dominant error is in the diameter of the wire, which varies along its length because of
limitations in the drawing and coating processes used by the manufacturer. Because of
this, the outer radius varies by approximately £0.5% from coil to coil. The parameter A

can be approximated

2
A = Lo (Fouter —r?me,)(———N———) . (2-24)

Fouter — ¥inner




The number of turns, N, and the inner radius, r, ., can be controlled with good accuracy.

From Eq. (2-24) we obtain

dA = ( 2r inner? outer ]dr outer (2_25)

2 r
A Piuer =P outer

For the Model Ib sensing coils, the value of the coefficient is 0.9, so the relative error in A
is +0.5%. There is no equivalent simple expression for y. Computations using Eq. (2-15)
and Eq. (2-14) show that the coefficient relating the fractional error in v to the fractional

error in r,_is about four times greater than for A.

outer

Because of these variations in the coil diameter, the sensing current will apply a
force to the proof mass. We can estimate its magnitude by considering the simple case of
a proof mass confined to motion in one degree of freedom, with the coils on the lower side
of the mass having A larger by a factor 1 + € than those on the upper. Dropping the qua-
dratic terms, and approximating the inductance at x = 0 by L~ Ad, the inductances
become

Liower = A(d+x) (1+¢), and

2-26

As above, we solve the circuit equations to get expressions for the current through each
branch of the circuit. Setting the expression for the current through the SQUID input coil

to zero, substituting Eq. (2-26), and solving for x gives the displacement at which the

bridge is balanced:
_ & _
X=s e (2-27)

Again, we substitute the expressions for the current, as well as Eq. (2-21), into
Eq. (2-20), to obtain the force as a function of position. Using Eq. (2-27) and performing

a Taylor expansion, we find the force when the bridge is balanced:

F,= %1413 +0[e?]. (2-28)
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The current /, is sinusoidal, I, = I_cos(w,_?), so assuming that it has no dc offset, the force

os¢
will be applied at dc and 2w . The proof mass displacement in response to the force at
20, is small because w,_>>w,, the resonance frequency, but the force at dc appears as an

acceleration (F )/m.

Hence, any fluctuations in the amplitude of the bridge drive current will appear as

acceleration noise. We can make an estimate of the magnitude of this noise. A small

change in the current, 8/, will produce a change in acceleration of

_EA (Sl _
aa_Zmrg([S ) (2-29)

Using € = 1% and the value for I at optimum coupling for the SSA-Ib, the coefficient of
the relative current error becomes ~ 10 m/s>. The critical components of the current
source can have temperature coefficients as low as 10 ppm/K. If these elements can be
controlled so that the temperature noise does not exceed 107 K/Hz'?, the equivalent ac-
celeration noise should be of the order of 10° m/s* Hz'?. At frequencies of order 0.1 Hz
and higher, temperature fluctuations in the critical components will be smaller, so accel-
eration noise will be lower. This noise source has not been observed in preliminary tests
of SSA because /, was limited by other considerations to a value well below the value at

optimum coupling.

2.5.2 Model Ib: open loop measurements

Ideally, the noise of the instrument is dominated by that of the SQUID amplifier.
However, below the proof mass resonance frequency, w, the SQUID noise is not detect-
able below the seismic noise experienced by the platform. However, above ®, the dis-
placement of the proof mass to an acceleration of given amplitude drops off as @7, so the

white noise level becomes visible at several times ®, depending on the drive current. Ini-

tial tests indicate that the measured power spectral density of the SQUID output is white
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in this region and it meets the manufacturers specifications (1 pV/Hz'* at the output,
10" A/Hz'” referred to the SQUID input) with currents into the oscillator drive trans-
former primary up to the maximum amplitude of the voltage-to-current converters,
45 mA,_.. Well below the proof mass resonance frequency, the signal at the SQUID input

coil is related to acceleration by

- M Ag ~
<]SQ> = <IOSC>(Ldr +L, LSQ + L, )A, (2 30)

where 4 =a, for translational acceleration and 4 = co, for rotational acceleration, and

i€ x,y, z. In preliminary tests, the factor in parentheses matches the calculated values to

within the error on the knowledge of the parameters (~3 %). For (/. ) = 45mA and
SQUID noise of 10" A/Hz'?, this coefficient gives a power spectral density of accelera-
tion noise of 9x10™"' g,/Hz'” for translational circuits and 7x10~® rad/s* Hz'* for rotational
circuits. (These numbers vary slightly with modulation frequency and the configuration of
levitation currents.) This represents an improvement by a factor of four and two for the

translational and rotational circuits, respectively, over noise of the Model I SSA with the

same drive current amplitude.

One advantage of the ac displacement sensing scheme is that it is not limited by the
1/f noise of the SQUID, because the signal is modulated to a frequency well above the
transition to the white noise regime. However, at low frequencies, there are many other
mechanisms that can possibly contribute to random fluctuations in the accelerometer out-
put. Nonlinearity in the levitation force and the displacement sensing, and other nonlinear
effects, such as the motion of wires in response to the sensing currents, may contribute to
down-conversion of noise. Another nonlinear process, slip-stick motion of the wires, may
contribute to drift when the suspended accelerometer moves with respect to the vacuum
can. The fluctuation of the accelerometer temperature may couple to the acceleration out-
put through the temperature dependence of the superconducting penetration depth. Final-

ly, temperature fluctuation in the dewar, especially the rubber suspension spring, can cause
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a change in the position and orientation of the accelerometer. Changes in position can
couple to tilt through asymmetries in the suspension. A change in the tilt angle changes
the component of gravitational acceleration along the sensitive axes. This last effect is not

a problem with the accelerometer, but with the test rig.

Most of these mechanisms that generate low frequency noise will affect all six
channels approximately equally. However, at low frequencies (w << 1), variation in the
angle of the housing with respect to vertical will affeét the translational acceleration much
more strongly, because it modulates the full field of the Earth: da =g, sin6 80 =
(8.00 m/s?) 80, whereas it affects the angular acceleration only through the small factor w”:
do = 0?80. Fluctuations in the temperature of the accelerometer body will also affect the
translational channels more strongly than the angular. The effect of the penetration depth
variation acts through the levitation circuits, for which all coils are on one side of the
proof mass. For a simple circuit consisting only of the levitation coils in series, the proof
mass moves so that the effective spacing between itself and the coils, which equals the gap
minus twice the penetration depth, remains constant. (In the actual circuit, the change in
the secondary inductance of the feedback transformer must be taken into account.). How-
ever, torque is created by a difference in the levitation force on the two sides of the torque
axis. Therefore, if the initial angular displacement is close to zero (so that a small dc
torquing current is needed), a uniform temperature change will not create a torque
(though modulation of the secondary inductance of the feedback transformer will modu-
late the torquing current.) The displacement sensing circuits are, to first order, unaffected
by a change in the penetration depth, because a uniform change in the gaps above and be-

low the proof mass does not alter the bridge balance.

Figure 9 shows the power spectral density of the outputs of one linear and one an-
gular acceleration channel below 1 Hz. The amplitude of the bridge drive current is the
same for both channels. The signals are referred to current through the SQUID input coil.

Thus, the relative amplitude of the signals shows the relative degree of bridge misbalance.
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The top and bottom traces are signals from translational and rotational circuits, respective-
ly. In this frequency range, the seismic noise is generally quite low. Below the microse-
ism peak, which can be seen in the translational signal near 200 mHz, it drops rapidly,
reaching a minimum of several times 10"'° m/s Hz'”? near 10 mHz. Therefore, the tranla-
tional signal below 100 mHz does not appear to be related to the seismic motion of the
floor. However, except for temperature, errors internal to the accelerometer should be the
same for the two channels. The noise on the rotational channel is within a factor of two of
the SQUID amplifier noise (10" A/Hz"?) down to ~40 mHz, and then rises with a power

law dependence of less than 1/£ Fluctuation in temperature of the SSA is too small to

2
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Figure 9. Power spectral densities of a translational and a rotational channel at low

frequencies. The upper curve represents translational acceleration along the y axis. The

lower curve represents angular acceleration about the x axis. The signal has been referred

back to current through the SQUID input coil. Typical SQUID noise is ~10"" A/Hz".

Both channels have the same bridge drive amplitude.
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account for the excess noise on the translational signal, which has approximately a 1/f fre-
quency dependence, and is most likely due to the variation of the orientation of the device

with respect to vertical.

The maximum drive current, and thus the maximum sensitivity, is limited in the
SSA-Ib by the resistive component of the bridge misbalance signal. The inductances of
the sensing coils are functions of the gap, and by adjusting the position of the proof mass,
the inductances can be adjusted to balance the bridge. However, the arms of the bridge
can also have resistance, due, for example, to coupling to the resistive coil forms. The re-
sistive component of coil impedance will not be a sensitive function of gap, and so mis-
match in the resistive component of the bridge arms can not be removed by adjusting the
gap. The inductive component of bridge misbalance causes a current through the SQUID
input coil that is in phase with the sensing current, /. The resistive component causes an
I, 90° out of phase with /,. Figure 10 shows the in- and out-of-phase components of the
demodulated SQUID output with several different currents stored in the corresponding le-
vitation circuit. The output voltages have been converted to the degree of bridge balance
(Isqu/I,) by dividing by the SQUID current-to-voltage gain and the sensing current,
(obtained with Eq. (2-21)). The lock-in measures phase with respect to the oscillator,
which includes a constant phase shift, predominantly from the resistive core of the bridge
drive transformer. This phase angle has been removed. With the resolution of the current
source used for adjusting the levitation current, the in-phase component of the bridge bal-
ance can be adjusted to a few parts in 10°. When operated in closed loop, the balance im-
proves by more than an order of magnitude. The out-of-phase component of the bridge
balance varied from 1 X107 to 4 X10~°. Therefore, especially in closed-loop operation, the
misbalance signal at the oscillator frequency is due primarily to the out-of-phase compo-
nent. At 1 kHz, the slew rate limit of the BTI SQUID controller restricts the maximum
current through the input coil to less than 2.0 pA, so for a bridge balance of 4 X107, the

maximum /, is 0.5 A, which is less than the current required for optimum coupling.
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Figure 10. The degree of balance of the r, sensing bridge on the complex plane during a
current storing sequence. The bridge balance is the current through the SQUID input coil
divided by the current through the secondary of the bridge drive transformer. The
horizontal axis is the signal in phase with the oscillator and the vertical axis is the
out-of-phase signal. The different points represent the balance with different currents
stored in the r, levitation circuit.
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2.6 Control of the SSA-Ib

A six-axis accelerometer measures translational and rotational acceleration in all six
degrees of freedom. The desired outputs of the instrument are six signals, each
proportional to the acceleration of the device along one of the measured axes, and
independent of the accelerations along the other axes. Hence, the instrument should
ideally have a diagonal fransfer function matrix. However, analysis of the linearized
model of the system reveals that in open loop operation, the SSA-Ib does not have
a diagonal transfer function. In fact, due to the weak damping of the modes of the
SSA-Ib, it does not even have a diagonally dominant transfer function. These lightly
damped modes also complicate the design of a precompensator to provide diagonal
dominance to the open loop system. The goal of the control aspect of the project is to
design an easily implementable compensator that will provide a diagonal (or almost
diagonal) closed loop transfer function matrix, while also improving the linearity and
bandwidth of the instrument. By taking advantage of the particular structure of the
open loop transfer function, it is possible to develop a relatively simple controller
which fulfills these requirements. The controller consists of two main components:
a decoupling component, and a set of single-input, single-output (SISO) controllers
which provides the required bandwidth and improves the linearity of the SSA-Ib.
Using this approach, we reduce a multi-input, multi-output (MIMO) design problem
to six independent SISO design problems.

The stability and stability robustness of the proposed controller have been
analyzed in Bachrach. et al. (1990a). The stability of the closed loop system is analyzed
using Rosenbrock’s Inverse Nyquist Array (INA) method (Rosenbrock, 1969), and a
very simple set of conditions for the stability of the closed loop system are obtained.
The stability robustness of the closed loop system is studied using a singular values
decomposition approach (Doyle and Stein, 1981). In this report we will summarize

these results. For a more detailed treatment of these topics, refer to Bachrach et
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al. (1990a), included in Appendix B.

2.6.1 Transfer functions of the SSA-Ib

The equations of motion of the SSA-I or SSA-Ib are derived as outlined in Section 2.4

(or for a more detailed analysis, see Parke (1990)). Taking the Laplace transform of

the linearized equations of motion of the SSA-Ib, we can obtain the relations between

the proof mass displacements, the external accelerations and the feedback currents.

These relations can be written in matrix form. Define
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where 7(s) denotes the position of the proof mass with respect to the housing, I;(s)

denotes the feedback currents and ¥ (s) denotes the external accelerations, including

gravitational force (the dependence of the vector elements on s has been omitted for

brevity). Further, define the matrices:

0
~fi
Jr

K = diag{krz, kry, kr:, —kgz, —kgy, '—kg:}

0

fi
0

—J

T:.(s)
—Ji
fi
0
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where
Ti(s) =" + &s+wf, i=rs-,0;

It
4ALp,f..I‘ 2cAppy I .
i = m T’ kei = T ,y 1=1,Y, %, (2'32)
_— lQC —_ 112(
fI = 7T > fm ~ "m

We add the second term in 7T;(s) to account for damping. It assumes that the damping
force is linear with velocity. With these definitions, the equations of motion of the

proof mass become
W(s)7(s) = KI;(s) +a"(s). (2-33)

It is not hard to interpret the meaning of the matrices ¥(s) and K. ¥(s) relates the
-position of the proof mass with respect to the casing to the external accelerations
(including gravity). K relates the applied feedback current to equivalent feedback
accelerations. Inverting Eq. (2-33), we obtain an expression for the position of the

proof mass as a function of the external acceleration and feedback currents:

7(s) = U (s)K [I;(s) + K'a(s)] . (2-34)

Finally, since the signals measurable to the controller are the output voltages
of the sensing circuits, we need to relate the position of the proof mass to the output
voltages. This relation is modeled by the diagonal matrix Z(s) (sensing mechanism),

the displacement-to-voltage transfer function

V;mt = E(S)’F(S), E(S) = diag{arz, cee, 09, }f(s)v (2'35)

where f(s) is the low pass filter (LPF) transfer function of the lock-in amplifiers, and
o; is the gain produced by the sensing mechanism, for the i-th axis. Equation (2-34)

becomes

Voit(s) = E(8)U () K [Iy(s) + K5 (s)] - (2-36)
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Figure 11: SSA-Ib in open loop operation

The linearized model of the SSA-Ib is shown in Figure 11. Under the assump-
tion of perfect geometry (perfect symmetry), the parameters of the three translational
degrees of freedom are the same, as are the parameters of the three rotational degrees

of freedom. We will use this model in the design of the SSA-Ib controller.

2.6.2 Closed loop operation

In Bachrach et al. (1990b) it was shown that in order to improve the linearity of the
SSA-Ib, it is necessary to minimize the displacements and displacement velocities of
the proof mass. This can be achieved by adding a feedback controller, thus operating
the instrument as a null detector (Figure 12). The second important requirement is

for the closed loop transfer function to be diagonal, or at least diagonally dominant.

Figure 12 shows the main components of a conventional feedback controller
design. The block F'(s) corresponds to the dynamics of the controller, while the
block U corresponds to a MIMO, diagonal, voltage-controlled-current-source (VCCS)
defined as

O = diag {v,,,~0s, } - (2-37)

This stage is added since for the linearized model of the SSA-Ib, the force on the proof
mass is proportional to the current added to the feedback circuit (levitation coils).

The transfer function between acceleration input @€ and controller output voltage
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Figure 12: The SSA-Ib in closed loop operation
Vm is ,
Vim(s) = — I + F(s)G(s)U] ' F(s)G(s)K'a”, (2-38)
or
V() = ~07 [(OF(s)G(s) ™ + 1] K~'a”. (2-39)

Mathematically, this transfer function could be made perfectly diagonal simply

by choosing F(s) in the following way (remember U is diagonal):
F(s) = U7 A(s)G7(s), (2-40)

where A(s) is a diagonal transfer function which could be designed to produce a desir-
able closed loop transfer function. This scheme, however, is based on the assumption
that one could construct a controller F(s) such that F(s)G(s) = U~'A(s), or in other
words that we can construct an inverse of G(s). In practice, this is very difficult to
achieve in a reliable manner over a wide frequency range, mainly because of plant
uncertainties. In the SSA-Ib, realizing such an F'(s) would be especially difficult be-
cause the modes of the SSA-Ib are very lightly damped (Qy, as high as 1500), making
the product F(s)G(s) particularly sensitive to model uncertainties. Also, the con-
struction of such controller would require the implementation of 36 complex transfer
functions. The proposed decoupling controller will require only the implementation
of 18 transfer functions, out of which 12 have only one pole and one zero, while the

remaining 6 are also relatively simple.
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Figure 13: Complete solution

Since attaining a perfect diagonalizing controller according to Eq. (2-40) is not
' feasible, we could place a weaker assumption on F (s), requiring only that it produces
a diagonally dominant F'(s)G(s). The stability and robustness of the resulting closed
loop system could then be analyzed using Rosenbrock’s Inverse N yquist Array (INA)
(Rosenbrock, 1969) method. For the SSA-Ib, however, finding a relatively simple
F(s) which would ensure diagonal dominance of F(s)G(s) proves particularly difficult

because of the high values of Q,, and Qy,

The Controller

Equation (2-39) does not immediately suggest any other choices of F(s). Let us
consider the configuration shown in Figure 13. In this configuration the purpose of
the component D(s) is to decouple the system, while the component C(s) provides
the necessary feedback to produce the desired bandwidth and response to the overall
system. We will denote by Dy(s) an ideal decoupling D(s), which for now we assume
to be realizable. The closed loop transfer function of the new configuration will be

(assuming, for the moment that D(s) = Dy(s))

1

Voi, = —C(s) [G7X(s) + UC(s) + UDy(s)] " K~'a. (2-41)
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One can see from Eq. (2-41) that the closed loop transfer function can be made

diagonal by choosing Dy(s) such that

Do)y = - [5G, (L=bg)s GG =16 (24D
where
Jij:{lifizj, (2.3
0if i 7
and
C(s) = diag{cr,(s), -+, co.(s)}- ‘ (2-44)

Thus, Do(s) cancels the non-diagonal elements of G ~1(s). Assuming such cancellation
to be possible, the transfer function thus obtained is diagonal. Based on the definition
of G(s), it is convenient to rewrite C(s) and Dy(s) in terms of the matrices K, Z(s),

¥(s) and U. Thus, we write C(s) and Do(s) as follows:

C(s) = UK ®(s)Z7(s), (2-45)
where
®(s) = diag {r,(s), - -, do.(s)}, (2-46)
and we write Dy(s) as
Dqo(s) = UIK 1 (s)Z71(s), (2-47)
where
[¥(s)], =~ (2O, (1= 8y); i.j=1,---,6. (2-48)

With these definitions, it is possible to rewrite the closed loop transfer function in

the following manner:

out —

Vm, = —5TIK10(s) [U(s) + F(s) + (s)] a®. (2-49)

Expression (2-49) does not provide any new information, but it emphasizes the sim-
plicity of the proposed scheme, since the only parameters left to be designed are the

diagonal elements of the matrix ®(s) (all non-diagonal elements are 0), corresponding
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to the C(s) component of the controller. Moreover, the problem of designing ®(s) is

in fact equivalent to six independent SISO design problems.

So, under the assumption that Do(s) can be implemented to cancel the non-
diagonal elements of G7!(s), C(s) can be designed as six independent SISO con-
trollers, transforming our MIMO design problem into six independent SISO design
problems. In the present case, however, Dy(s) as defined in Eq. (2-47) is not realizable
since the non-diagonal terms of G~!(s) are not realizable. Thus, a crucial question
for the design is: How accurately do the elements of Dy(s) have to approximate the
non-diagonal elements of G~1(s) ? A realizable transfer function can be made to fit
well at low frequencies, but it diverges from the ideal function at high frequencies,
since the non-diagonal terms of G~'(s) are not proper'. In Bachrach et al. (1990a) it
was proved using Rosenbrock’s INA method, that the cancellation of the non-diagonal
elements need not be perfect; it is sufficient for the stability of the closed loop system
that G~'(s) + UD(s) + UC(s) (where D(s) is an implementable version of Dy(s)) be
diagonally dominant. Fortunately, the diagonal terms of G~!(s) for the SSA-Ib are
of higher order than the non-diagonal terms, so that at high frequencies G7l(s) is
naturally diagonally dominant. Thus, D(s) needs to be an accurate approximation
of the non-diagonal terms of G! only over a limited frequency range. Moreover,
this analysis reveals that the closed loop will remain stable even if any or all the
elements of D(s) are zero. Thus, this is also a possible implementation of the con-
troller, although, as can be expected, the decoupling performance of the controller
deteriorates. For the SSA-Ib, a relatively simple implementation of Dy (s) will satisfy

all the stability and performance requirements.

1A transfer function is proper (strictly proper) if the number of poles is equal to (strictly smaller

than) the number of zeros.
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Figure 14: Open loop transfer functions between acceleration and Vit

2.6.3 Simulation results

The transfer function obtained through the linearization of the dynamic equations
of the SSA-Ib can easily be simulated and compared to the measured equations.
For SSA-I, we obtained a very good match between the measured and the modeled
transfer functions (Bachrach, 1990b). For SSA-Ib, the open loop transfer functions
have been simulated, and the resulting transfer functions for a translational (r,) and
a rotational (f,) input are shown in Figure 14?. As can be seen, the open loop transfer

function is not diagonal, nor is it diagonally dominant.

Figure 15 shows the closed loop transfer functions for the translational and

2For all the figures included in this document, the terms “ri” and “ai” refer to r; and 6;.
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Figure 15: Closed loop transfer functions between acceleration and V,,,

rotational input. Clearly, a considerable improvement in the decoupling has been
achieved. For the translational degrees of freedom we achieve a rejection of about
50 dB with respect to the closest transfer function, while for the rotational degrees
of freedom the rejection reaches about 100 dB. In order to improve the linearity of
the instrument, integrators were included in the components of C(s) to minimize
the displacement of the proof mass in the low frequency region. By minimizing the
displacement of the proof mass we improve the linearity of the instrument. The
robustness of the closed loop system was analyzed in Bachrach et al. (1990a), and it
was shown that input or output multiplicative perturbations (which can be considered
as magnitude errors) of about +80% at the worst possible frequency could be tolerated
without causing the closed loop system to became unstable. In Bachrach et al. (1990a)

it was also proved that even if one or all terms of D(s) were disconnected, the closed
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loop system cannot become unstable. Notice finally that in closed loop operation,
the degree of rejection (or decoupling) improves as the frequency decreases, while for
the open loop system the coupling is constant below the resonance frequency of the

plant.

Equation (2-49) shows that the overall gain of the closed loop system depends
on the gain of the VCCS. The gains of the VCCS were fixed so that the maximum
desirable acceleration applied to a given axis (10~° m/s’ for translational degrees of
freedom, 5x10~° rad/s® for rotational degrees of freedom) produces a 10 V output

signal (V™

out

) for the corresponding channel.

Once these gains are set, and a set of nominal parameters are chosen for the
sensing mechanism, the gains of the controller components can be calculated (the
zeros and poles of the controller are independent of these gains, see Egs. (2-45) and
(2-47)). The controller transfer functions shown in Table 2 correspond to a given set of
nominal parameters for the sensing mechanisms. This set is included in Appendix C,
and will be used for all simulations thereafter. For a more detailed discussion of the

controller, see Section 2.8.




Controller transfer functions

VCCS O i=Tgy 0,0,
G (1=7g,Ty,72) —46.095 pA/V
v (1= 0z,0y,0.) —92.476 uA /v

(l+‘_+)(zi2+z,-/Qs+s2)

Diagonal controller ci(s) = gismsnrsar=yy = et be
Py p2 P3

g (i =71g,7y,72) ~0.073
gi (1= 0z,6,,0:) —1.084
z (1 =7z, 7y, T2) 84.5 rad/s
z (1 =05,0,,0,) 85.3 rad/s
z1 753.9 rad/s
2 1068.1 rad/s
D2 . 1256.6 rad/s
p3 7539.8 rad/s
Q 4
Off-diagonal controller di(s) = gjg—:;ji—i, j= fm, fi.
g; (4 = fm) —0.086
g9; (7 = fi) —0.836
21 785.4 rad/s
D1 7853.9 rad/s

Table 2: Controller transfer functions
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2.7 Noise Analysis

The SSA-Ib is designed to be an extremely sensitive measurement device. Hence,
one of the most important aspects of its design are noise limitations. This section is
devoted to the analysis of the open loop and closed loop performance of the instrument

with noise-generating components.

We will compare the performance of the SSA-Ib in both open and closed loop
operation in two ways. First, we study the effect of noise on stationary, very low-
frequency, single-axis accelerations. This analysis will be carried out algebraically,
and will be helpful to understand how the parameters of the different components of
the sensing mechanism affect the smallest detectable acceleration with and without
the use of a feedback controller. A second approach will be based on the fact that
the controller implementation is available for measurement, and the power spectral
density of the noise sources considered in the first analysis can be measured. Havin'g
these data available, their effect can be estimated in terms of the measured output
and, more significantly, in terms of equivalent acceleration noise. We can thus ac-
curately evaluate the smallest measurable signal for the particular implementation
of the controller, and for the nominal parameters of the SSA-Ib over any frequency

range.

For both of these analyses we make two fundamental assumptions. We as-
sume all noise signals to be white, mutually uncorrelated, and uncorrelated with the
acceleration signals being measured. Also, we will not include the effect of Brownian
motion noise (see Paik et al. (1989) or Parke (1990)), since it is indistinguishable from

acceleration signals, and will be unaffected by the addition of a feedback controller.




2.7.1 Linearized noise model of SSA-Ib

The first step in the study of the noise performance of the SSA-Ib will be to obtain a
linearized model of the overall system including noise. Figure 16 shows the detection
mechanism for the i#th axis of the SSA-Ib, where two input signals (i and v%)
have been added. These signals represent the input-current noise (i%;) and output-
voltage noise (v7) of the SQUID amplifier. A detailed noise model of the SQUID
can be found in Hollenhorst (1979) or Hollenhorst and Giffard (1980). Based on
this model and experimental measurements, it has been determined that the SQUID
noise is dominated by the input-current noise, and we therefore neglect v%. Clearly,
i% contributes to the output of the lock-in amplifier (V2,) in a non-linear way. In

this section we obtain a linearized noise model of the SSA-Ib.

In order to obtain the noise spectral density at the lock-in amplifier output
due to the SQUID noise, we will first compute the autocorrelation function of the
voltage signal V/(t) after demodulation®. According to Figure 16, we find that the

voltage after demodulation is
Vit)=A [ip(t)li/\i cos(wit + @) + z}(t)] cos(w;t + ¢), (2-50)

where ¢ is a random variable uniformly distributed over the interval 0 to 27, and we
assume that the phase shift between the source signal and the demodulation signal

(¢; in Figure 16) has been properly adjusted so that the detection is synchronized.

We denote the autocorrelation function of signal j as K;. We can write the

autocorrelation function of the signal after demodulation as

Kyi(t,s) = E,{[iP(t)IIN] cos(wit + ) + 5 (t)] A cos(wit + ¢)
[P(8) AL cos(wis + @) + 1% (s)] Acos(wss + @)},

.

(2-51)

3The lock-in amplifiers do not use a sinusoidal wave in the demodulation stage, but a square

wave. We consider only the first harmonic, since all others will not affect the noise performance.
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SQUID " Lock-in Lock-in

) A Gain A LPF Gain i
IEXE cos(wit) cos(wst + ¢;) |
Figure 16: Sensing mechanism including noise sources, ¢ = 74, -, 0.

where E,{f(¢)} denotes the expected value of f(y) for some given probability dis-

tribution of ¢. Since % is uncorrelated with the displacement signal i, we obtain*

Kyi(t,s) = (LINA)*Kin(t, 5)E, [cos? (wit + ¢) cos®(wfs + )]

(2-52)
+A%Kin (8, 8) E,, [cos(wit + @) cos(wis + )] .

By the fact that ¢ is a random variable uniformly distributed over the interval 0 to

27, it can be shown that

E, [cos?(wit + ) cos?(wis + )] = @) s
E, [cos(wit + p) cos(wis + )] = cos(w§2(t—s)).

Hence, assuming i% to be white, and i to be stationary, we can rewrite the autocor-

relation function as

sz (7_) — (I;)\;A)2sz (’T) 1+ COSEfWi (T)) + A2Ki} (T)Eg_s_(ﬁ;i(ﬂ, (2_54)
where 7 = t — 5. The Fourier transform of Eq. (2-54) gives
. AT So(w — 2w : 2w A?
Siyw) = U gt ) o S0 2D 2 S A W) | B (255)

where we denote S]’: (w) = spectral density of signal j for the -th degree of freedom,
and where we have used the fact that Sy is frequency independent. Finally, the low

pass filter will (approximately) remove the second order harmonic terms Sk (w — 2ws)

“Regretfully, the letter ¢ is used both in i® (denoting position of the proof mass) and in i%

(denoting the SQUID current noise).




and S}, (w + 2w;). Including the low pass filter transfer function, f(s), and the gain
of the output stage of the lock-in amplifiers, 10/Sens;, we obtain

. IEXEA)? . 1 1
S0, (W) = (—8455,, (w) + §A2sﬂ} <_0

: Sor) G (250

Based on Eq. (2-56), and noting that

;A 10
i=INZ : 2-57
? *° 2 Sens; (2-57)
the equivalent output of the i-th sensing circuit can be written as
. 10 A
Vou(s) = [Uiip(s) + EJ%%ZZ(S)J f(s), i=7z,---,0.. (2-58)

Hence, we modify our model of the SSA-Ib in open loop operation (Eq. (2-36)) to

include the equivalent SQUID noise as follows:

Vout(5) = G(s) [I1(s) + K1a"(s)] + 07 (), (2-59)

where

7 (s) = 10 10 10 10 10 10 }Ai%s) (5). (2-60)

Sens;, Sens,, Sens; Sens,, Sens,, Sens,,

Figure 17 shows the SSA-Ib in closed loop operation, where we have included
the different possible noise signals due to the SQUID and the controller. These signals
are

(1) 9%: Input referred noise of block C(s) of the controller,
(2) v%: Input referred noise of block D(s) of the controller,

(3) 7%,: Equivalent SQUID current noise,

(4) v3: Input refered noise of VCCS.
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Figure 17: Closed loop system with noise sources

We express V™, as a function of all the input signals. From Figure 17 we obtain the

out

following system of equations:

Voo = C(8)(02 = Vou),

out
_ _ (2-61)
Voe = 0, +G()K " [a + KO + VT, + D(s) (@ — Vour))]
Solving for V™, we obtain the following expression for the output:
Vm = —C(s)[G71(s) + OC(s) + UD(s)]"'G7}(s)T}
—C(s)[G(s) + BC(s) + UD(s)] 1K~ 'a® (2.62)

) (s)]
) (s)]
) +UD(s)]7'0(v5 + D(s)7p)
) (s)]

( ) (

( ) (
—C(s)[G7(s) + UBC (s

( ) ( G (s) + OD(s)]vg

+C(s)[G~(s) + UC(s) + UD(s

We will use these expressions to evaluate the effect of the feedback loop in the noise

performance of the SSA-Ib.
2.7.2 Noise comparison between open and closed loop op-
eration: Low frequency

The purpose of deriving expressions (2-59) and (2-62) is to compare the performance

of the SSA-Ib in open and closed loop operation. To make such comparison we study
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the response of the system to very low frequency signals (w << w;). Although this
is done mainly to simplify the mathematical analysis, the low frequency region also

corresponds to the region of interest for the instrument.

The choice of a low frequency signal is mathematically convenient because we
can greatly simplify the resulting expressions by taking the limit as s — 0 of Eq. (2-
62). Making the comparison for accelerations along a single axis, though, requires
some consideration. As already shown, the open loop transfer function matrix of the
SSA-Ib is not diagonally dominant, and although at low frequencies the coupling is
_small, it is orders of magnitude larger than in closed loop operation. Hence, the output
of any of the axis is not only contaminated by the noise sources under consideration,
but also by accelerations along other axes. In closed loop operation, on the other
hand, the closed loop transfer function is almost diagonal at low frequencies (0 -
0.1 Hz). Thus, it is important to note that the conclusions of this comparison are
not entirely “fair”, since the chosen test signal biases the results in favor of the open

loop configuration.

Minimum Detectable Signal in Open Loop Operation

From Eq. (2-59), we find that the response of the SSA-Ib in open loop operation to

a low frequency translational acceleration can be approximated by
lizy Vour(s) = limy ()9 ™" ()2 (5) + 74, (5)) - (2-63)
Substituting Eq. (2-60), and since lim,_o f(s) = 1,

lim Vs (5) = (0) ¥ (0)aZ(0) + diag {10/Sens,., -+ -, 10/Sensy. ) —%i}, (2-64)

where we have made use of the assumption that the SQUID current noise is white,

so that the dependency of the spectral density on frequency is omited. If we consider

60



the response to acceleration along the z axis, ag,

10 A

. T . g, . Ao 3
‘EI_I)% out(s) - w?z ll_I)% ax(s) + Sensrz \/§7’A' (2 65)

We assume the signals in question to be uncorrelated, so that we can directly obtain

the spectral density of the output at low frequencies:

2 2
, Or, . 10 A?
S (w) = ( 5 ) Sre(w) + ( ) —2—51‘2. (2-66)

. Sens;,

A signal will be considered detectable at a given frequency if its spectral density
is higher than that of the noise at the same frequency, or mathematically stated, if
the first term of Eq. (2-66) is greater than the second. Hence, a low frequency signal
will be detectable along the 7, axis if its spectral density is greater than

. wi 10 \?* A2
(S aim-n)o.z. - 02 (Sensrz) ?Siz' (2-67)

z

In general, for the ith degree of freedom,

4 2 42
oo =5 () 55

o2 \Sens;/ 2 4’

(i i =140, (2-68)

Minimum Detectable Signal in Closed Loop Operation

We can approximate the closed loop response of the SSA-Ib to a slowly varying signal
by taking the limit of Eq. (2-62) as s — 0. In this way, it is possible to obtain a
relatively simple expression for the output of the SSA-Ib (including noise). Further,
we assume that D(s) = Dy(s) for the frequencies of interest. For the last term of
Eq. (2-62),

C(s)[G7*(s) + UC(s) + UD(s)]{G7!(s) + UD(s)]

(2-69)
— 3 ci(s)(G1(8))is
= diag { (G—l(s»muici(s)} .
Taking the limit as s — 0, and since lim,_,o ¢;(s) = 0o, we obtain
lim,_0 C(s)[G~1(s) + BC(s) + BD(s)]{G(s) + UD(s)] (2.70)

= U diag {w?} E1(0)K L.
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In the first three terms of Eq. (2-62), the limit as s — 0 for the common factor is
li_£% C(s)[G7'(s) + BC(s) + UD(s)] ! =71 (2-71)

Thus,

lim, o Vo (s) = —07'G71(0)v%, — UK af — (& + D(0)7})

(2-72)
+U Ldiag {w?} E-1(0) K 152

Substituting the definitions of G(s) and Dy(s) (since we assume that D(s) = Dy(s)

for these frequencies):
G(s) =Z(s)¥ 7 (s)K, Do(s) = U 'K 1 (s)=7Y(s), (2-73)
where (¥);; = (¥);;(8(;, 7) — 1)), we obtain

lim, o V7% (s) = —U71K~1[W(0)="1(0)73, + ¥(0)="1(0)ap

(2-74)
—diag {w?} 271 (0)5% + KU + a®|

where dependencies on s have been omitted from all signals for brevity. After simpli-

fying, we obtain for the r, degree of freedom

. r 2 — -
timo (V) = e [Z2008 — o). + 2 (03, — 9B,

(2-75)
+ fi[ﬁ% - 625]9: - &T‘z - Urzer (UU)T;:] °
Under the assumption that all noise signals are uncorrelated, and uncorrelated with

the measured signal, we obtain the noise spectral density:

S, = o 2 (55 5) + & (55, + 58)

out 02 k2 (2_76)
+ 2 - (5% + S5, ) + Siz + LR ;g]

To make Eq. (2-76) more comprehensible we make one more assumption. Since

C(s) and D(s) are implemented with similar electronic components (since in both
cases we will try to make them as quiet as possible), and since they are also con-

nected to similar sources (the lock-in amplifiers) and loads (the feedback circuits), it
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is reasonable to assume that their noise spectral density will be of similar magnitude.

Thus, we conclude that (S,;(ﬁ7 + S,f,f;e), ( fic + Sg;’_{) ) and (Sg?) + ng) should be of

v

similar magnitude. Thus we can approximate Eq. (2-76) by

1 1 1 w?
Tr 2 Tz Tz Tz Tz 2 1.2 Qrz _
S = ¥ Kfm (—agy + —ag) + = ) (S5 + S35 ) + Saz + oLk, z.,g] . (277)

Tz

Hence, the minimum detectable noise in closed loop operation is

(S22, )cl [fm < + —1—) + -‘:—;éi] ( %+ S;ie) + o ki Sgf. (2-78)

’m.zn
Tz

Under the assumption of symmetry, we can rewrite for any translational degree of

freedom
(Sz )l = ( ,‘;33+ > (S5, + St )+uzk3 - (2-79)

Comparing this result with Eq. (2-68), we find that
2wt 2
T — T 2 = Zr T 2~ T 2 ~
(s ), =(Se. )., + ( o7t az) T+ ( mag> Sin + 02, K2 Sk (2-80)

Equation (2-80) allows us to make a comparison between the closed loop and

open loop noise performance of the SSA-Ib. Based on this result, we conclude that:

(1) The addition of a feedback controller can only worsen the noise performance of

the SSA-Ib for the frequency range in question.
(2) The effect of the controller noise (S3,) can be reduced by increasing or and gy.

(3) The effect of the SQUID noise (57 7 ) can be reduced both in open and closed
loop operation by increasing o; (the gain of the sensing circuits). It is important,
though, to increase o; by maximizing the sensing currents / ! instead of increas-
ing the gain of the lock-in amplifiers (i.e., instead of taking Sens; small), since

the SQUID noise is also amplified by the lock-in amplifier gain (see Eq. (2-58)).

(4) Increasing o; does not reduce the noise caused by the VCCS. Hence, for the
satisfactory closed loop performance of the SSA-Ib, it is critical to design the
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corresponding circuits as noiseless as possible. This will be taken into consid-

eration in the Section 2.8.

We must keep in mind though that, as previously explained, this comparison
is not entirely fair since it does not take into consideration the difference in coupling
between the different axes of the SSA-Ib in open and closed loop operation. Hence,
although conclusions 2, 3 and 4 will always be valid, conclusion 1 depends for its
correctness on the signal being considered. An even more important consideration is
that the comparison just made assumes that the parameters of the sensing mechanism
are the same for open and closed loop operation. It is reasonable to assume that it
will be possible to apply higher sensing currents I? in closed loop operation than in
open loop, since the proof mass will be much better balanced. This was in fact verified
in SSA-I (the first prototype). Hence, it is possible that the overall noise level will
be lower in closed loop operation than in open loop operation. Again, it is for this
reason that great care was taken in the design of the VCCS, since it is the only noise

source which we cannot attenuate by increasing the sensing currents.

2.7.3 Noise comparison between open and closed loop op-

eration: Wide-band

In the previous section we examined the low frequency region in order to obtain rela-
tively simple expressions which help us study the influence of the different instrument
gains on the noise signals at the measured output®. Also, we determined the minimum
measurable acceleration for the SSA-Ib in open and closed loop operation. From a
different point of view, we can also interpret the results of the previous section as

having obtained the equivalent acceleration noise due to the different noise sources

SNotice that once the controller is operational, the measurement output of the system is no longer

the output of the lock-in amplifiers, but the voltage output of the controller.
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both in open and closed loop operation. In this section we will take this approach,
but we no longer limit the analysis to the low frequency region. The price we pay for
this extension is that we will obtain results corresponding to a given controller im-
plementation and a given configuration of the SSA-Ib, i.e., the nominal configuration

in which it will be operated in closed loop.

Once the different measurement parameters of the SSA-Ib and the parametefs
of the controller are chosen, it is possible to obtain the transfer function between the
different noise inputs and the measurement output over any desired frequency range.
Moreover, once the hardware implementation is built, it is possible to accurately mea-
sure the contribution of each noise source, and obtain estimates of their contribution
to the overall noise at the measured output. Finally, we can refer this noise contri-
bution to equivalent acceleration noise, and thus obtain wide-band estimates of the

lowest measurable acceleration.

This analysis complements the low frequency analysis shown in the previous
section. As it was concluded that the controller will inevitably increase the noise level
of the instrument, it is important to determine how significant this effect will be, and
what happens at higher frequencies. The present analysis will allow us to determine
whether the proposed closed loop configuration significantly affects the performance
of the instrument in closed loop operation. As before, we assume that all the signals

are stationary, uncorrelated, and uncorrelated to each other.

Modeled noise-to-output transfer functions

In order to estimate the contribution of the different noise sources on the measured
output, a MATLAB program was written which calculates the different transfer func-

tions between the noise sources and the measured controller output (V7). The results

of these simulations follow. The parameters used in this simulation are the same as
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Figure 18: o2 to V™, transfer function

out

the ones used in the design of the controller. A complete set of these parameters can

be found in Appendix B.

The top plot of Figure 18 shows the transfer functions between the measured
outputs of the different degrees of freedom, and a noise signal applied to the r, degree
of freedom input of 7%. Similarly, the bottom plot of Figure 18 corresponds to a signal
applied to the 6, input of o%. The same calculation was performed for all the noise
sources in consideration. For example, Figure 19 corresponds to U35, and Figure 20
corresponds to the SQUID current noise %} (the relationship between the equivalent

SQUID noise %, and the SQUID current noise is given by Eq. (2-60)).

It is important to remember that these transfer functions correspond to a

particular set of nominal parameters (i.e., gains of the sensing mechanism). Equa-
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Vout vs. input referred noise of VCCS applied to rx axis
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Figure 19: o3 to V7, transfer function

tion (2-74) is a good guide to understanding the relationship between these nominal
parameters and the resulting transfer functions. For example, the gain of the transfer
functions corresponding to 7% (Figure 18) can be decreased by increasing the gains of
the sensing circuits (o;), but the gains of the transfer functions corresponding to o3
(Figure 19) cannot be modified by varying the parameters of the sensing mechanism
(see Eq. (2-74)). As already mentioned, it is for this reason that special care was

taken in the design and implementation of the VCCS.

Modeled equivalent acceleration noise

After completing the controller hardware we measured the power spectral density of

the noise signals 7%, 7% and 9% shown in Figure 17. As for the SQUID input current
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Vout vs. SQUID current noise applied to rx axis
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e transfer function

noise, we assume a noise spectral density of 101! A/ vHz. These measurements,
together with the calculated transfer functions, were used to obtain the spectral den-
sity at the measured output (V) due to the different noise sources. However, in
order to make a comparison between open and closed loop operation of the SSA-
Ib, all these noise signals were translated into equivalent acceleration noise, i.e., the
equivalent noise signal at the acceleration input which would produce the given noise
signal at the measured output, either the output of the lock-in amplifiers in open loop

operation, or the voltage output of the controller in closed loop operation.

Figure 21 shows the equivalent acceleration noise produced by the measured
input referred noise of the components of C(s). In this calculation, we assume that all

six channels of C'(s) are noisy, and that all the channels have the same input referred

68




Equivalent acceleration noise due to components noise of C(s) (translational)
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Figure 21: Equivalent acceleration noise spectral density due to v

noise. Thus, due to the symmetry of the system, we get the same noise level for all
outputs corresponding to translational degrees of freedom, and the same noise levels
for all outputs corresponding to rotational degrees of freedom. Hence, each plot in
Figure 21 corresponds to three overlapping traces. Similarly, Figure 22 shows the
equivalent noise acceleration due to D(s), Figure 23 corresponds to the noise due to
the VCCS, and Figure 24 corresponds to the noise due to the SQUID in closed loop

operation.

Most interesting is to compare the overall equivalent acceleration noise in
closed and open loop operation. Figure 25 shows the contribution of the SQUID
both in open and closed operation, and the overall contribution of the controller. As

expected, the contribution of the SQUID in open and closed loop operation is almost
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Equivalent acceleration noise due to components noise of D(s) (translational)
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Figure 22: Equivalent acceleration noise spectral density due to 77

identical. Especially significant is the fact that the contribution of the controller
is significantly lower than that of the SQUID at frequencies below the resonance
(w < w;). In other words, the noise performance of the SSA-Ib is almost the same in
open and closed loop operation over the frequency region of interest, and currently
the noise limitation is imposed by the SQUID, not the controller implementation.
Hence, although the controller does add noise to instrument, the contribution is
neglectable below the resonance frequency of the plant, and the performance loss
1s thus minimal. It is important to keep in mind though, that these conclusions
are valid for the nominal parameters, and that the comparison was made assuming
that the same parameters were used in open and closed loop operation. As already

mentioned, it is reasonable to expect that it will be possible to use higher sensing
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Equivalent acceleration noise due to components noise of VCCS (translational)

1 T"7

10

]
-
=]

e
(=)
T

'
-
N

m/s*2/sqrt(Hz)
)
J

rad/s"2/sqrt(Hz)

Figure 23: Equivalent acceleration noise spectral density due to

currents in closed loop operation since the balance of the proof mass will be much
better. This was in fact our experience with SSA-I, the first experimental prototype
of the six axis accelerometer. Based on this observation, and in the results of the
preceding analysis, it is entirely possible that the noise performance of the SSA-Ib
could in fact improve with the addition of feedback control. The most significant

result of this section is then that:
(1) The equivalent acceleration noise due to the SQUID is almost the same in open
and closed loop operation.

(2) The overall equivalent acceleration noise in closed loop operation is dominated

by the SQUID noise for all frequencies below the SSA-Ib resonance.




Equivalent acceleration noise due to SQUID current noise (closed loop) (translational)
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Compa%ison of total equivalent noise in open and closed loop (translational)
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2.8 Controller Implementation

In the design of a controller for the SSA-Ib, both an analog and a digital implemen-
tation were considered. However, although digital controllers offer great advantages
in flexibility, technical considerations led to the choice of an analog implementation.
One important constraint is the sensitivity of the SQUID to rf interference. Because
of its inherent rf clock noise, it is desirable in general to avoid having digital circuits
attached to the sensitive superconducting circuitry. More importantly, the use of
a digital controller would have required to sacrifice one of the most significant ad-
vantages of the SQUID sensing circuit, its large dynamic range. Generally, digital
controllers are 16 bit devices, which would limit the resolution of the inputs and out-
puts to & 1 part in 32K. Averaging techniques and expensive components can stretch
this limit by a few more bits, but that still does not match the dynamic range of the

SQUID.

Table 3 shows the parameters used as nominal operating conditions for the
SSA-Ib. The complete set of nominal operating parameters used in the design of
the controller is included in Appendix C. While the controller design is based on
these values, there is significant flexibility built into the system, and it is capable of
performing even if any of these parameters changes. For example, the open loop gain
of each individual feedback channel can be adjusted, if it becomes necessary either
due to uncertainty in the SSA-Ib dynamics or changes in the gains of the instruments

used to sense the position of the proof mass.

2.8.1 Controller structure and transfer functions

The structure of the controller is shown in Figure 26. It consists of a total of 12

independent cards, out of which 6 are input cards and 6 are output cards, with
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Nominal parameters used in controller design

Maximum measurable acceleration

Translational 10~* m/s?

Rotational 5x10~* rad/s?
SQUID gain 10* V/A (scale 3)
VCCS (sensing current drive) gain 1A/V
Lock In amplifier

Vosc. 100 mV (rms)

Gain (Sens.) 10 (1 V)
Levitation Currents

Translational 4.88554 A

Rotational 0.48855 A

Table 3: simulation parameters

a total of 12 inputs and 12 outputs: 6 voltage inputs (V™) which receive signals
corresponding to the position of the proof mass (these signals are produced by the
the lock-in amplifiers), 6 noise inputs (V;*) for diagnostic and tuning purposes, 6
voltage outputs (V;°**) which correspond to the accelerations being measured, and
6 current outputs ([7**) which feed currents to the levitation circuits of the SSA-
Ib. In Figure 26, the dashed rectangle corresponds to an input card and each dotted
rectangle corresponds to an output card. This structure was chosen for its modularity,
which simplifies the design, implementation and debugging of the circuitry. In the
following sections we provide detailed explanations of the considerations involved in
the design of each of these cards, and more specifically, of each sub-circuit within

each card.

The main technical challenge for an analog implementation is to deliver the
required dynamic range. For this reason, great care was taken in optimizing the dy-

namic range of the overall controller, and maintaining the noise produced by it to a
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Figure 26: Structure of controller implementation
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minimum. In order to optimize the dynamic range of the overall instrument, the gain
of the VCCS in the output stage of the controller was chosen so that for the maximum
possible signal at the input of the VCCS (10 V), a feedback current corresponding
to the maximum measurable acceleration would be produced. The maximum accel-
eration was chosen based on the knowledge of the acceleration environment of the
platform obtained from previous tests. Once this gain is chosen, all the other gains

of the transfer functions are set.

As will be pointed out in the description of the circuitry of the output card,
extreme care was taken in making the VCCS stage and the adder stage in the output
card of each channel as gain-stable as possible. The reason for this requirement is the
following. Due to the topology of the closed loop, any variation in the gain between
the output voltage (V°%, see the controller diagram) and the acceleration input will
appear as a variation of the gain of the closed loop system. Thus, the gain between
these two points must be extremely stable. Special care was taken both in the circuit
conﬁgﬁration and the components used to achieve the best possible gain-stability for
this section of the output card. This can also be seen in Eq. (2-49), where the gain

of the closed loop transfer function is proportional to the gain of the VCCS.

All the circuits of the controller were implemented with three similar opera-
tional amplifiers: OP27, OP227 and OP177. All these operational amplifiers have
very low voltage noise, voltage offset, and voltage offset temperature drift. A few

subtle differences motivated choosing among them in different sections of the circuit.

The OP27 was chosen as the building block of the controller because of its
excellent noise and stability characteristics. The OP227 is simply a dual OP27 and
was used in some critical parts of the circuit where good matching between the op-
erational amplifiers was desired. The OP177 has a lower voltage offset, bias current
and offset current than the OP27, but has higher voltage noise and lower slew rate. It

is better matched to higher input impedances, where the effect of a bias current and

7




Lock-In

Amplifier Differential
Amplifier

Buffered Gain
Stage

Diagonal Control

First Stage

Output

Diagonal Control _C_’a.rds

Second Stage

Figure 27: Input card schematic

Output
Off-Diagonal Cards
Control

Output

Cards

bias current drift is more important, and where low voltage noise is less important.

Care was taken to check that its lower slew rate did not introduce distortion. It

was used in some sections of the circuit where it was desired to avoid the need for a

resistor between the positive leg of the operational amplifier and ground, and where

its higher voltage noise and lower slew rate did not adversely affect the performance

of the circuit.

Input Card

Figure 27 shows a block diagram of the input card. Its main components are:

(1) Differential amplifier: Receives a signal proportional to the position of the proof

mass from the lock-in amplifier. Its high CMRR reduces interference and prob-

lems associated with different ground potentials between the instruments.

(2) Buffered gain: Controls the overall gain for the corresponding axes, and acts as

a buffer between the differential amplifier and the following stages.

(3) Diagonal control first stage: Implements part of the diagonal transfer function

of the controller (integrator, 120 Hz zero, 1200 Hz pole).
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R4 Trans. Rot.
Gain 1.35 21
Rl 4.99 k2 4.99 kO

;l>—;— R2 20kQ 2.0kQ

R3 28 k2 0.5 kQ
R4 20kQ2 2.0kQ

N
R5 1.96 kQ 1.96 kQ
R6
e R6 02kQ 0.2kQ

Figure 28: Schematic diagram of differential amplifier stage

(4) Diagonal control second stage: Implements part of the diagonal transfer function

of the controller (complex conjugate zeros, 200 Hz pole and 170 Hz pole).

(5) Off-diagonal stage: Implements part of the off-diagonal transfer function of the

controller.

Differential amplifier

The circuit transfer function is given by (see Figure 28)

R4 (R34 2R1),_,. .
Gdiff = E-(-W——)'(V’Ln_{. - V’l,’n,_).
The differential amplifier is part of the block G;, i = 74, -+, 0, in Figure 26.
Made with one OP227 and one OP27, it is a standard implementation of a differential
amplifier. This stage of the circuit receives the signal from the lock-in amplifier
corresponding to the position of the proof mass. Its high common mode rejection ratio

reduces radiated interference received by cables and eliminates problems associated

with different ground potentials in different instruments.

Design Parameters: The gain of the differential amplifier was chosen to obtain
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the maximum possible dynamic range. Hence, an input signal of maximum possible
amplitude would result in an output signal of 10 V (which is the maximum nominal
voltage for this circuit). In order to calculate the maximum possible input signal
for this stage, a simulation program was written in MATLAB which produces the
magnitude of the output of each stage of the controller (and in this case, of the
lock-in amplifier) as a function of frequency, assuming that the maximum tolerable
acceleration is experienced at all frequencies. This program was used to calculate the

gains of each stage of the controller in an optimal way.

For this stage, the maximum input signal takes place at the resonance fre-
quency of the corresponding axes. The calculated gain assumes a maximum measur-
able acceleration of 107 m/s? for the translational degrees of freedom and 5x10~* rad /s?
for the rotational degrees of freedom (see Table 3). As a result, the desired gains are
1.33 for the translational degrees of freedom, and 19.72 for the rotational degrees of
freedom. The implemented gains were chosen slightly higher than the modeled gains
(1.35 for the translational degrees of freedom and 21 for the rotational degrees of
freedom) because we can always decrease the overall gain of the stage with the help

of the following stage (buffered gain stage) but we cannot increase it.

In order to obtain the best possible common mode rejection ratio, an OP227
was used in the first stage of the differential amplifier. The OP227 has the advantage
of operating as a pair of matched OP27’s. DC offset adjustment and common mode
rejection tuning were implemented according to the manufacturer’s recommendations.
"This minimizes voltage noise, without unnecessarily loading the OP’s. The DC offset
network was chosen to adjust voltage offsets at one of the OP227’s over a range
of £56 uV. As suggested by the manufacturer, two 4.99 kQ and a variable 0.2 kQ
resistors were used. Common mode rejection and DC offset potentiometers are not
accessible when all the circuit boards are installed in the box, and must be adjusted

beforehand.
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Trans. Rot.
R1 Vout R1 5.0k 5.0k

Figure 29: Schematic diagram of buffered gain control stage

Buffered gain

The buffered gain is part of the block G;, ¢ = rz,--+,0, in Figure 26. This stage
is both a gain control stage and a buffer stage to guarantee that enough current
is available to drive the following stages without loading the differential amplifier
stage. It is implemented as a simple buffered voltage divider with a single OP27 (see
Figure 29). It controls the overall gain of the controller for a given input card, so
that if changes in the gain of the sensing instrumentation are necessary, the open loop

gain can be maintained by adjusting only the buffered gain stage of the corresponding

input card.

Design Parameters: The value of the potentiometer, R1 = 5 k{2, was chosen

so as not to draw too much current from the previous stage, while maintaining the
voltage noise due to this resistor low. The potentiometer is mounted in the upper
edge of the card, so it can be adjusted even when the cards are installed in the box.
Notice that by implementing this stage in this fashion, it is possible to vary the gain

down to zero, or in other words, completely cancel any chosen input.

Diagonal control first stage

The circuit transfer function is given by (see Figure 30)

R2+R3
e (s) = 1 (s+ (c1+cz)11233))
b Rl c(ilfgz s(s + 02133)

) 7'=Tza"'a92-

The diagonal controller had to be divided into two stages for its implementa-
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Trans. Rot.
R1 145k 14.5 kO

R2 13.0kQ 13.0 kO
Vous R3 13kQ 1.3kN
C1 1 pf 1 pf
C2 01pf O0.1uf

Figure 30: Schematic diagram of first diagonal control stage

tion. The following is a description of the first of these stages. This stage is part of
the block ¢;, i = r;,--+,0, (see Figure 26). This section of the controller input card
implements the following transfer function:
(1+2)

——al =y, 0,
8(8_*_}%3)7 x» L4

Ciy (8) = G;

This implementation was achieved with a single OP177. The OP177 was chosen
over the OP27 because its very low bias current eliminates the need for a resistor
between the positive leg and ground to match the source resistances of the two in-
puts. In addition, the Johnson noise of the source resistance (approximately R1 =
14.5 kS2) produces approximately 15 nV/ vHz which is greater that the voltage noise
of the OP177 (10 nV/vHz) and much greater than the voltage noise of the OP27
(3 nV/v/Hz), so there is no advantage in using the low noise OP27.

Design Parameters: Most of the values of this stage were chosen to obtain the

required pole (at 1200 Hz) and zero (at 120 Hz) using standard component values.
The only free parameter left was R1, the resistance at the input of this stage (which
determines the overall gain of the stage, g;,). As with all other stages, the main
consideration in choosing the gain of this stage was to maximize the dynamic range.
Hence, as with the differential amplifier stage, the gain of this stage was chosen so
that at the maximum input signal to this stage, the output signal would have the

maximum possible amplitude. Since both the differential amplifier and the buffered
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gain stage have flat transfer functions, the maximum input signal shows up at the
same frequency as at the input of the differential amplifier, i.e., at the resonance
frequency of the corresponding axes. Also, since the same consideration was used for
the differential amplifier, the amplitude of the input signal at this frequency will be
10 V (assuming the buffered gain stage is set to its maximum gain, 1). Hence, the
gain of this stage was chosen to be 1 at the resonance frequency of the corresponding

axes, which corresponds to R1 = 14.5 k€.

Diagonal control second stage

The circuit transfer function is given by (see Figure 31)

2 1 _ __R3 R3
ci,(s) = R4S’ + (Gici — mreci)S T+ Fimeracics = e
(] - R3 52+( 1 )S+ R4 ) — Iz s Vz-
RI1C1 R5RTR2C1C2

The second stage of the diagonal controller implements the following transfer

function:
(22 + z,/Qs + §?)
D1 D2

This stage is part of the block ¢;, i = rg,- -+, 8, (see Figure 26).

P =Tz, 0,

Design Parameters: This circuit was chosen because it allows the frequency

and quality of the complex zeros to be tuned independently, each with a single po-
tentiometer. An admissible set of components was chosen to implement the desired
poles and the pair of tunable complex conjugate zeros. The variable resistor R6 (see
Figure 31) controls the frequency, while R8 controls the damping of the complex

conjugate pair of zeros. The designed and implemented values are:

12 Hz 21 Hz  implemented low implemented high

R8 4.301 k2 4.328 k2 4.26 kQ 4.36 kQ
R6 87.24 kQ0 28.49 k2 114 kQ 14 kQ




RT

Cl
|
R¢ C2
RI
> R2 RS5
I Va Ve Ve Wl
+
RS R9 R3 é R10 R6
— Vout
Vin
Trans. Rot. Trans. Rot.
R1 4.32 k2 4.32 k2 R7 20 k2 20 kO
R2 1.0 kO 1.0 k2 R8 4.26-4.36 k2 4.26-4.36 kQ)
R3 1.0 k2 1.0 k2 R9 1.96 kO 1.96 kQ2
R4 100 k2 100 k2 R10 0.5 k2 0.5 k2
R5 39.2 k2 39.2 kO C1 0.1 pf 0.1 uf
R6 14-114 k2 14-114 kQ C2 1 uf 1 uf

Figure 31: Schematic diagram of second stage of diagonal control stage

The values of these resistors were chosen to enable the tuning of this stage
to resonance frequencies between 12 and 21 Hz, while maintaining the resonance

damping at 4, according to the controller design.

To improve resolution, R8 was implemented as shown in Figure 32. These
values allow the controller to be tunable for resonance frequencies between 10.5 and

30 Hz. All other values were chosen as close as possible to their designed values.

This stage was implemented with two OP27’s and one OP177. The effective
source impedance of the rightmost OP in Figure 31 is relatively high. Therefore,
an OP177 is better matched, and is used instead of an OP27. The potentiometers
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Trans. Rot.

R1 6.23 kQ 6.23 kQ

R3 R2 13.5kQ 13.5 kQ2
R3 1.0k 1.0kQ

R2
R1

Figure 32: Detail of R8

which control both the frequency and quality of the complex zeros are mounted in
the upper edge of the card, so that they can both be adjusted even when all the cards

are installed in the box.

Off-diagonal filter

The circuit transfer function is given by (see Figure 33)

R2+ RA+R5

_R3 (s + Giriror i) i = fi fm

= R2iRALR5 R3Y ¢ = J LT
Rl(s+ C1RA(R2+R5) )

di,

This section of the controller input card implements the following transfer

functions:

(s+785.398) .
di =g L= fi, fm.
951185308 L SHIm

This stage is part of the blocks dj; and the blocks dyy, in Figure 26. It is
implemented with a single OP27. This stage includes a zero at 125 Hz (to “cancel”
the pole introduced at the output filter of the lock-in pole amplifier) and a pole at
1250 Hz.

Design Parameters: Once an admissible set of components was chosen to im-

plement the desired transfer function, the only parameter left was the gain of this
stage. The gain of this stage was chosen so as to avoid saturation, while maintaining

the output signal relatively large, although not necessarily maximal. This stage was
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Figure 33: Schematic diagram of off-diagonal controller stage

not optimized for dynamic range because the optimal gain would have required the
use of relatively large resistors at the adder stage of the output cards, which would
have increased the noise level of the instrument. The potentiometer controlling the
frequency of the zero (nominally at 125 Hz) is located at the upper edge of the circuit

card, and thus accessible when all the cards are installed in the controller box.

Output Card

Figure 34 shows a block diagram of the output card. Its main components are:

(1) Buffered independent gain stages: Provides independent gain control of each
for the signals received from the input cards (diagonal and off-diagonal signals).
This also allows to completely cancel any specific signal. These stages also act

as buffers to avoid loading the input cards unnecessarily.

(2) Diagonal output gain stage: Provides the correct scaling so that the output
voltage is easily related to the measured acceleration. It also provides part of

the gain required for the diagonal feedback loops.
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(3) Adder stage: Produces a weighted sum of the signals received from the input

cards, and from a noise input used for diagnostic purposes. It also allows for

sign changes in these signals, if necessary (except for the noise signal).

(4) Voltage controlled current source (VCCS): Converts the voltage signal into a

current signal to be applied to the feedback coils of the SSA-Ib.

Independent gain stages

Each of these variable gain stages are implemented as buffered voltage dividers (see

Figure 35). Their purpose is to provide independent control of the gain corresponding

to the diagonal and off-diagonal components of the control signal before they are

added. Also, these stages act as buffers to avoid loading the input cards unnecessarily.

Each of these stages are implemented with a single OP27.

Design Parameters: As in the input card, the only parameter to be chosen is

the resistance R1. As in the case of the input card, a value of R1 = 5 k{2 was chosen.




Trans. Rot.
RI Fout RI 5k0 5k0

Figure 35: Schematic diagram of independent gain stages

Diagonal output gain stage

This stage (see Figure 36 provides additional gain for the measured acceleration out-
put (V). The gain of this stage was chosen so that a 10 V output signal corresponds
to the maximum measurable acceleration for the corresponding axes. In this way, the
dynamic range of the circuit is optimized. Also, this stage provides part of the gain

required for the diagonal components of the feedback system.

Design Parameters: The only parameter to be chosen for this stage is its gain,

and the resistance values to implement it. The gain was fixed by the considerations
previously explained, so that for the translational degrees of freedom we obtain a gain
of 9.731, and for the rotational degrees of freedom we obtain 9.724. The components
were chosen so as to obtain a gain value as close as possible to the required while

using standard components (and avoiding the use of large resistance values).

Adder stage

The adder stage produces at its output a weighted sum of the signals at its input. It
adds all the required signals to be fed to the feedback coils of the levitation circuit of
the corresponding axes of the accelerometer. This adder has been designed to provide
the option of changing the sign with which each signal is added (see Figure 37). The
adder stage also includes a noise input for diagnostic and tuning purposes. It is

implemented with two OP177’s.
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R3 432k 4.32 kO

Figure 36: Schematic diagram of diagonal output gain stage

Design Parameters: The resistors which determine the gain of the signal corre-

sponding to the diagonal control term are very accurate and highly stable with respect
to temperature variations. The resistor pairs which control the different gains of this
stage are physically part of a monolithic resistor network with extremely low differ-
ential temperature coefficients. Hence, the resulting gains for each of the channels of
this adder stage are extremely stable. All this provisions were taken as a result of an
analysis made of the gain stability of the closed loop system. As this analysis reveals,
in order to achieve the required gain stability for the overall closed loop system, it is
critical that the gain of the controller stages between the measurement point (V;7*)
and the current output (I?“*) be as stable as possible. For this reason, the resistors
used for this stage and the next stage of the controller (the VCCS) were chosen to
have very low temperature coefficients (0.5 - 1.5 ppm for Vishay networks 300144 and
300145, 0.6 + 1.5 ppm for S102C and = 2.5 ppm for S102K resistors), and very good

absolute accuracy and matching.

The gain of the off-diagonal paths was calculated so as to provide the overall
desired off-diagonal gain. As mentioned in the off-diagonal stage of the input card,
the choice of gain in this stage and in the input card stage was a compromise between
good dynamic range and maintaining the values of the required resistors at the output

card relatively low.
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Figure 37: Schematic diagram of output stage adder

VCCS: Voltage-to-current converter

The final stage of the controller converts the voltage feedback signal produced by
the controller into a current signal. Defining G to be the gain of the differential
amplifier in the feedback loop, i.e., G = (2R5 + R6)/R5, and assuming 2R7 >> ZI

and GR2 >> R3, the voltage-to-current transfer function of this stage is

5i(s) = R3 1
"7 GRIR7(sC1R3G + 1)’

As with all previous stages of the controller, the parameters of this stage were

chosen so as to optimize the dynamic range of the controller. Also, as mentioned in
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the previous section, because the gain of this stage is critical to the gain stability of

the controller, great care was taken in using very stable components.

Design Parameters: In order to obtain the best possible gain stability for this

stage, great care was taken in the selection of the components used in the implemen-
tation. All the resistors for this stage of the controller were chosen to have very low
temperature coefficient (0.5 - 1.5 ppm for Vishay networks 300144 and 300145, 0.6
+ 1.5 ppm for S102C and + 2.5 ppm for S102K resistors), and very good absolute
accuracy and matching. Furthermore, all the resistors R4, R8, as well as R5 and
R6 are part of resistor networks embedded in single components, having extremely
low differential temperature coefficients so that the respective ratios remain constant
even if there are severe temperature changes. Similarly, the capacitor C1 was cho-
sen to have the lowest possible temperature coefficient, and relatively high absolute

accuracy.

The first parameter to be chosen for this section was the shunt resistor (R7).
Because two OP’s are used to provide a “push-pull” configuration, the overall compli-
ance of the output stage of this circuit is 20 V. Since the maximum required current
is 1 mA, the shunt resistor could not exceed 10 k2 (The impedance of the load can
be neglected for our application). On the other hand, since it is impossible to im-
plement a differential amplifier of gain 1 (with the given configuration), and in order
to improve the common mode rejection of the differential amplifier, it was decided to
implement a differential amplifier with gain 2 in the feedback loop. Then, in order to
avoid saturation of the output of the differential amplifier for the maximum required

current, the value of the shunt resistor was chosen to be 5 k€2.

Next, the overall gain of the VCCS was designed so that for the maximum
possible signal at the input of the VCCS (10 V), a feedback current corresponding
to the maximum measurable acceleration  would be produced. The desired gains and

the implemented ones are shown in Table 4.
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designed gain implemented gain
Translational -46.09 puA/V -46.1 uA/V
Rotational -92.48 uA/V -92.6 pA/V

Table 4: Designed and inplemented parameters of VCCS

Another consideration was to provide as much bandwidth as possible to the
VCCS, so that variations in the capacitor value (which is the least stable component of
the circuit, and which determines the VCCS bandwidth) due to temperature changes
would not affect the gain of the VCCS for the frequency range of interest, and also so
that the dynamics of the VCCS would not affect the performance of the controller.
The bandwidth of the VCCS as designed is 14.5 kHz.
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Figure 38: Schematic diagram of output VCCS stage




2.9 Preliminary Testing of the SSA-Ib Controller

A complete version of the SSA-Ib feedback controller has been built and tested to ver-
ify noise levels, transfer functions, and other performance requirements. The results
of these tests show that the controller implementation fulfills all design objectives.
Tests of the controller connected to the SSA-Ib have also been performed, and no
interaction problems have been found between the two systems. Individual axes of
the SSA-Ib have been operated in closed loop, without causing any negative effects on
the SQUIDs such as unlocks. Acceleration measurements over relatively long periods
of time (on the order of 1 to 3 days) with individual axes of the SSA-Ib operating
in closed loop have also been made without any problems. However, the full perfor-
mance of the feedback configuration has not been achieved due to the problems to be

discussed below.

2.9.1 SQUID saturation

Dynamic resistance:

We have observed the presence of out-of-phase signals of larger than expected
magnitude at the output of the lock-in amplifiers. Apparently, these signals are caused
by dynamic resistance in the sensing coils. The dynamic resistance of the sensing coils
produces a current signal at the input of the SQUID which has a frequency equal to
the modulation frequency of the lock-in amplifier of the corresponding axes, and
is phase shifted by 90°. Moreover, the magnitude of this signal is proportional to
the magnitude of the sensing current of the corresponding axes. Since the SQUID is
sensitive to both the in-phase and the out-of-phase components of the signals detected
by the sensing coils, the presence of an unexpectedly large out-of-phase components

limits the magnitude of the current which can be used to drive the sensing circuits.
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Sensing/levitation inductive coupling:

A large low frequency signal corresponding to the motion of the proof mass has
been detected at the output of the SQUID. This problem arises due to the presence of
mutual inductance between the sensing and levitation coils. The coupling between the
sensing and levitation coils causes the sensing coils to detect current signals induced
by the motion of the proof mass in the levitation coils. These signals appear in the
low frequency region (base-band) of the spectrum due to the low frequency dynamics

of the proof mass, and are in turn sensed by the SQUID.

As a result of these two effects, the input stage of the SQUID is saturated
at lower sensing currents than expected, forcing a decrease in the magnitude of the
achievable sensing currents. The main consequence of decreasing the magnitude of the
sensing currents is analyzed in Section 2.7 section. Equations (2-68) and (2-79) show
that the equivalent acceleration noise due to the SQUID current noise (in both open
and closed loop operation) is inversely proportional to the sensing currents. Thus,
the presence of dynamic resistance in the sensing coils, and the mutual inductance
between the sensing and the levitation coils effectively limit the achievable sensitivity

of the instrument.

2.9.2 Controller saturation and unmodeled dynamics

The mutual inductance between the sensing and the levitation coils has an additional
detrimental effect. As mentioned earlier, the coupling between these two circuits
produces a low frequency noise signal at the input of the lock-in amplifier. After
demodulation by the lock-in amplifier, this signal is aliased to high frequencies (more
precisely, to the modulation frequency of the lock-in ampliﬁer). Since in the design
of the controller large signals were not expected at high frequencies, we have noticed

that the controller can be saturated at gains lower than expected.
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In order to avoid the problems associated with these high-magnitude high-
frequency signals at the input of the controller, it has been necessary to introduce
additional filtering of the signal at the output of the lock-in amplifier. This has been
done in practice by making use of the high pass filters at the input of the lock-in
amplifiers. As a result of these additional filters, and because these filters were not
included in the original controller design (unmodeled dynamics), the full performance
of the feedback configuration has not been achieved. The reason for not achieving the
desired performance is that the presence of unmodeled dynamics makes it impossible

to increase the gain of the feedback controller to the required levels.

The problem arising due to the addition of unmodeled dynamics is one of
conditional stability, which did not appear in the original design. Conditional stability
means that the closed loop system can become unstable for some gains between zero
and nominal, but not at nominal gains. Thus, it is not the case that the closed loop
system is unstable when operating at nominal parameters, but there are intermediate
gains at which the system does become unstable. Since the first step to operate
the SSA-Ib in closed loop is to gradually increase the gains of the controller up
to their nominal values, it is in this process that the instability occurs. The fact
that these unexpected filtering poles produce such a drastic effect should not be
considered as a design flaw, and indeed is not very surprising. The SSA-Ib has such
low damping coefficients (or such high quality factors) at the resonance frequencies
that the addition of unexpected poles would have posed a similar problem for any

possible design.

In a first attempt to solve this problem without extensive modification of the
SSA-Ib, a new MATLAB simulation program which includes these additional poles
has already been developed, and testing of possible modifications of the controller has
already begun. At this stage, we hope that minor changes to the controller parameters

will solve the problem. An alternative approach might require a complete redesign of
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the controller. If such need arises, the modular structure of the controller will make

it unnecessary to completely redesign the controller implementation.

It should also be mentioned that high gain feedback with a similar (and much
more primitive) controller was possible in SSA-I, and high bandwidth closed loop
transfer functions were achieved. This experience with SSA-I indicates that it should
be possible to achieve the required performance of SSA-Ib. Also, it is worth men-
tioning that SSA-I used different SQUIDs than those being used in SSA-Ib, and it is
possible that the difference in the SQUIDs (dynamic range, for example) contributes

to some of the problem encountered.




2.10 Future enhancements

Recent measurements on the SSA suggest several design changes that could over-
come obstacles preventing it from fully achieving its inherent sensitivity. The most impor-
tant obstacle to overcome is the out-of-phase component of the bridge balance. It is
believed that this signal is proportional to the misbalance of the resistive component of the
ac bridge. The superconducting coils of the bridge have a resistive component to their im-
pedance because they are inductively coupled to the metal coil forms. Better matching be-
tween the resistive components may be hard to achieve because it depends on factors that
. are difficult to control. For example, the coupling to the coil form will depend on the coil-
proof mass gap, which will not be matched, even with the inductance bridge in balance,
because of imperfect matching of coil form heights and imperfect alignment of the enclo-

sure walls.

One way to greatly reduce the effective coil resistance is by changing the material
of the coil form to a dielectric, such as Macor, a machineable glass-ceramic used for the
coil forms of the SGG. Although the metal coil forms do provide some attenuation from
rf signals coupled through the oscillator leads, the gradiometer described in Section 3,
which also uses an ac displacement sensing technique, has recently operated successfully
using Macor coil forms. Switching to Macor coil forms was considered early in the SSA
program, but was rejected because of high machining costs. However, winding coils on
the metal forms without short circuits requires many more steps than winding coils on in-
sulating forms, so that the lower coil winding cost will more than make up for the higher
machining cost. Based on experience with the ac gradiometer, we expect that the re-
sistive component of the bridge mismatch will be reduced by at least an order of magni-
tude, so that it will no longer be an important limitation on the drive current. In this case,
the drive current will be limited by the SQUID dynamic range and the level of platform ac-
celerations. On a very quiet platform, drive currents large enough to give optimum coupl-

ing should be attainable.
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Another problem that complicates the operation of the SSA is the coupling be-
tween the levitation and sensing coils. As discussed in Section 2.5.1, this could be greatly
reduced by putting a gap between the coils using a small dummy coil. Reducing the avail-
able coil area will increase the necessary levitation current somewhat, but the current will
still be low enough that the levitating field does not exceed the critical field of niobium.

Decreasing the coil-proof mass gap will also reduce the coupling.

Improvement of the dimensional accuracy of the SSA, particularly the parallelism
and orthogonality of the coil form and proof mass surfaces, would improve the perform-
ance of the SSA. It would better the alignment of the sensitive axis. It would also reduce
the torquing and bias currents required to balance the angular acceleration bridges. The
present housing design (see Figure 2) is not ideal from the standpoint of precision assem-
bly. The chamfered surfaces on each of the pieces that make up the enclosure walls must
accurately mate with four similar surfaces, and the cylindrical surfaces must fit with close
tolerance inside the holes of the precision cube. Thus, there are many constraints on the
position of each part that must be simultaneously satisfied. A new design for the housing
is shown in Figure 39. In this design, four of the enclosure walls are cut out of a single
block using wire EDM (electric discharge machining), a process that can usually hold tol-
erances of £2.5 pm. The surfaces that mate with the end caps can also be cut in this way.
The only requirements on the end caps are then that they be flat and parallel, requirements
that are easily met with standard machining techniques. It is expected that this housing
design could reduce the dimensional errors by nearly an order of magnitude, to a few parts
in 10*. This would require an improved proof mass, which could be obtained by cutting a

new mass out of a single block using EDM.




Sensing coi
(niobium wire)

Levitation coil
(niobium wire)

(niobium)

Figure 39. SSA showing improved housing design.

100



3. AC GRADIOMETER

3.1 Introduction

Development of the Superconducting AC gravity gradiometer (SAGG) was initi-
ated with the intent of producing an instrument suitable for moving base applications.
Previous gravity gradiometers developed at the University of Maryland have sensed test
mass positions using persistent (dc) currents which are constant in time, provided that the

test masses are stationary. In contrast, the SAGG uses sinusoidal (ac) sensing currents.

This provides various advantages and disadvantages relative to the dc gradiome-
ter. Most of the fundamental noise sources are the same for both devices, but limitations
on available electronics suggest that the SAGG will have a sensitivity inferior to that of the
dc device, except possibly at frequencies far below the 1/f knee of the SQUID amplifier.
However, the dc devices suffer from step changes in the output (due to SQUID control
loop unlocks) which, if not compensated for, give rise to a loss of continuity in the data.
This problem makes it difficult to acquire low frequency data. The SAGG uses the same
type of amplifier, but because of the modulation of the sensing current, an unlock event

only produces a short length of bad data, with continuity before and after the unlock.

A moving base device, contrasted with a fixed gradiometer, is likely to have a less
stringent requirement on absolute sensitivity, but is much more subject to large transient
electrical and vibrational inputs which can produce unlock events. Possible moving base
applications include measurements aboard airplanes, trucks, and elevators. All these situa-
tions are considerably more harsh than the laboratory environment. For moving base ap-
plications, we can expect acceleration transients of about 0.01 to 1 g; to occur during a
measurement interval of perhaps 15 minutes to 3 hours. This compares to a laboratory en-
vironment with accelerations of 10 ” g, and measurement intervals of about 10 to 100 sec-

onds. Both dc and ac gradiometer designs may ultimately be developed into moving base

devices, but at present the SAGG appears to have significant advantages.
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3.2 Principles of Operation

We can for convenience separate the gradiometer into electrical, mechanical, and
thermal components. The electrical circuits of the device can be divided into three types:
levitation, sensing, and feedback. The circuits are depicted in Figures 40 and 41. Note
that the feedback transformers are part of the levitation circuit. Mechanical subsystems in-
clude the springs and test masses, and the suspension. Thermal components are the de-

war, liquid helium bath, vacuum can, and temperature stabilization features.

An idealized mechanical picture of the gradiometer is as follows: A housing con-
tains two test masses, each connected to the housing by a spring. Each mass-spring ele-
ment is an accelerometer. The housing is coupled to the Earth by a suspension. If the
suspension is very soft, we can model the gradiometer as three masses (the housing and
two test masses) connected by two springs. If the springs are collinear and only allow mo-
tion along one axis, then the normal modes of this system are the common mode and dif-
ferential mode. (Because of the non-zero stiffness of the suspension, there are low
frequency modes involving the entire gradiometer. These modes are in general a mixture
of translations and rotations, which are weakly coupled to the common mode.) The com-
mon mode involves both masses being displaced in the same direction, as occurs when an
external vibration shakes the housing. The differential mode involves the two masses
moving toward or away from each other, as occurs in the case of a gravity gradient. Two
readout or sensing circuits exist, one to sense differential mode (DM) gradients, and the

other to sense common mode (CM) accelerations.

Figure 40 shows the sensing circuits. Both DM and CM circuits use two flat coil
inductors as sensing elements together with two fixed inductors, forming a bridge configu-

ration. In the current sheet approximation, the inductance of a flat spiral coil is
L=Ad (3-1)

A=p AN, (3-2)
102



Fixed lhmdlucton'—/{

Coupling Transformer
\ .
7;; (K ;Z'Dmve Transformer
Nulling Transformer—1 | g7 7 {W i\\— SQUID
N~
2 |~ Fixed Inductor

-

Sensing Coil

a) Common mode

Sensing Coil

//7///
' :§ § ¥ /—Dnve Transformer

9

Fixed Inductor
SQUID |
W \ Coup]ljmg Transformer
§ Nulling Transformer
b) Differential mode

Figure 40. Displacement sensing circuits of the ac gradiometer.
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Figure 41. Levitation circuits of the ac gradiometer.

where d is the gap between the coil and the adjacent flat parallel superconducting surface,
N 1s the pitch of the coil, and 4 the coil area. The sinusoidal excitation current is trans-
former coupled in from a room temperature current source. When the bridge is unbal-
anced, current flows through a coupling transformer, which impedance matches the bridge

to the SQUID input coil.

The SQUID amplifier produces an output voltage proportional to the input cur-
rent. Our SQUIDs are commercial devices. Their performance characteristics will be dis-

cussed later.

In order to obtain the desired sensitivity to gradients, this type of gradiometer de-
sign requires a rather precise balancing of the bridge (of order one part in 10°%). If the
bridge is not balanced, then the SQUID will be overloaded (more precisely, the slew rate
limit on the SQUID controller feedback loop will be exceeded causing the controller to

lose lock). The high degree of balance required is partially a consequence of the large

104



ratio between the coil-to-test mass gap (0.015 cm) and the smallest detectable displace-
ment (~10"? cm). Coarse bridge balance is achieved by storing currents in the levitation
circuits, which repositions the test masses, and thereby changes the inductances of the
sensing coils. Fine control is accomplished by sending small steady currents into the feed-
back transformer primaries. Thus far, we have not attempted to run the gradiometer in a

closed loop mode of operation.

This device uses biased springs. This means that when the test masses are properly
positioned, in an ideal device, the gravitational force on them is balanced by forces pro-
vided by the mechanical cantilever springs, and the currents in the levitation circuits are
small. The dc gradiometer uses similar springs, but in an unbiased position, so that when
the masses are properly positioned the gravitational forces are compensated for, principal-
ly, by magnetic levitation. This difference is not considered to be important to instrument
performance. It would reduce any effects due to magnetic creep, at the price of enhancing
the effect of any mechanical creep. The temperature dependence of the elastic modulus

becomes more important in the biased spring design.

The levitation circuits use current storage methods identical to those used pre-
viously in this laboratory. Carbon resistor heat switches are used. Current storage is done
under computer control. The circuit topology used here makes balancing the device
against sensitivity to external vibration (scale factor balance, described below) relatively
simple, at the price of a small decreasing gradient sensitivity. Here, each stored current af-
fects only one test mass. This is not true of more sophisticated designs that, although

somewhat less easy to balance, provide lower differential-mode frequencies.

When a persistent current is stored in a circuit and the inductance is varied by the
motion of a test mass, the magnetic flux in the circuit remains constant. In order for the
magnetic. flux to remain constant when the inductance changes, the current must vary.
This means that the levitation currents produce a spring constant as well as a force, and

thereby increase the CM and DM frequencies.
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In this device, the mechanical springs give a zero current differential mode fre-
quency of ~20 Hz, and we have an operating (with levitation and sensing currents applied)
differential-mode frequency of 26.4 Hz. This is considerably higher than ~7 Hz achieved
in the three-axis SGG. The transfer function between a gradient signal I" applied to the

gradiometer and the current, 7, through the SQUID input coil is

dlsp / AL

Iex ,
or Why 8 JLsoLar

where I, is the bridge excitation current, y,, is the differential mode angular frequency

(3-3)

and / is the effective separation between the test masses. Ly, is the SQUID input coil in-
ductance and L, is the inductance of one arm of the bridge. (The arms are assumed here
to be perfectly matched.) Here the factor { < 1 relates to imperfections in the coupling
transformer. It is calculated to be 0.72 from the measured transformer characteristics.
When a known gradient source is used, we obtain a signal level 68% of that predicted by

this equation.

When an acceleration is applied to the gradiometer, it is desirable that this not af-
fect the gradient (DM) output. Because of mismatches in sensing coils, fixed inductors,
and gaps, the DM circuit has imperfect rejection of translational accelerations along the
sensitive axis of the accelerometers. (Geometrical imperfections in the gradiometer pro-
duce additional sensitivities to off-axis translational acceleration and to rotational accelera-
tions.) This on-axis sensitivity can be viewed simply as a discrepancy in the scale factors
of the two accelerometers. In the dc gradiometers this can be nicely dealt with by storing
different sensing currents for the two different accelerometers. In the present device, scale
factor balance is achieved by storing currents in the levitation circuits, thereby varying the
spring constants of the two accelerometers. This allows for balance at very low frequen-
cies, well below the CM or DM frequencies. We achieve scale factor balance of a few
parts per thousand, which is adequate to reject the ambient seismic noise. At this level of

balance other noise sources are dominant, in the laboratory environment.
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In addition to bridge balance and scale factor balance, there is quadrature balance.
Ideally, a balanced bridge would put zero current into the SQUID. We typically observe a
significant out-of-phase (or quadrature) signal. The constant component of the quadrature
signal can be canceled at the SQUID input using the nulling transformers. In the recent
tests this quadrature balancing has not been necessary since the time-varying in-phase sig-
nal from the CM and DM modes is larger than the (approximately constant) quadrature

signal. The origin of the quadrature signal is not known; it is not proportional to /.




3.3 Mechanical and Electrical Construction

To reduce costs, a single-axis gradiometer operated in 1982 was refurbished with
new sensing coils, levitation coils, and electronics. The old test masses and springs were
used in the original housing. A new cryostat insert was required. This followed closely a
previous design although several details were changed. Production of a new Nb vacuum

can and flange was required along with the insert.

Several coils and transformers of various types were constructed and tested. No
new technology was required. However, epoxy or varnish impregnation was used on
fixed inductors and transformers in order to minimize wire motion. The flat coils in this

device have been thermally cycled several times without failure.

The spot welding is one of the most critical and time-consuming parts of the in-

strument assembly. The techniques used parallel those used previously in this laboratory.

3.3.1 Electronics

One electronics box was built for this device. It contained two circuits which al-
lowed control over the amplitude and phase of a sinusoidal input signal. These were used
to send signals to the nulling transformers. It also contained two voltage-to-current con-
verters having low noise characteristics. These provided sensing currents to excite the pri-
mary of the drive transformers. An Ithaco 3961B lock-in amplifier is used to demodulate
the SQUID output signal and to provide a stable oscillator from which to derive the drive
current I,.. This is the current sent to the primary of the drive transformer; the current /I,

sent through the bridge is about four times larger.

The SQUIDs used were one BTI RF and one BTI dc SQUID, used for the CM
and DM sensing, respectively. Filtering of the signal was done using a dual Krohn-Hite

filter.
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The automated current storage was done using a PC and a digital interface which
this experiment shared with the three-axis SGG. A Keithley DVM and Keithley current
source were also part of the current storage system. An SHE current source was used to

provide the fine bridge balance control.

The HP Dynamic Signal Analyzer was used to evaluate the power spectral charac-

teristics of the gradiometer output and to evaluate transfer functions.

3.3.2 Software

The software for the current storage did not require much modification for the re-
cent series of tests. Minor alterations were made to be consistent with the redesigned le-

vitation circuits.

3.3.3 Suspension

We operate the SAGG in a vertical orientation, using a pendulum suspension. The
upper part of the pendulum shaft is a metal coil spring. The lower part is a G-10 fiber
glass shaft. A small permanent inagnet at the top of the shaft is situated between a pair of
Helmholtz coils just outside the vacuum space. The coils and magnet act as a voice coil
actuator to move the SAGG along the vertical axis. The lowest suspension mode is 0.50
Hz. Pendulum modes are at 0.75 Hz (2nd harmonic response), and the vertical mode is at
1.20 Hz. It is expected that a different suspension, one that allows control over the tilt

angle, will be needed for a moving base application.
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3.4 Noise and Error Sources

There are many noise and error sources for gravity gradiometers. We shall begin
by cataloging those effects which are understood. The following section will assess the

observed instrument performance and discuss possible further development.

3.4.1 SQUID noise

A BTI dc SQUID was used for the DM circuit, and a BTI RF SQUID for the
CM circuit. The CM circuit SQUID performed as per specifications. The intrinsic
- SQUID noise for the DM SQUID was verified in a storage dewar as 75 nV/Hz"”?
(gain x1), which should correspond to 1.5x10"> A/Hz">. In the dewar insert and attached
to the SAGG, with no excitation on the DM bridge, the white noise was degraded by
about a factor of 7. Also, the SQUID unlocked frequently (of order once a second) in
FAST (high bandwidth) mode. Consequently, data was taken using NORM mode, which

has a reduced slew rate.

There are large test mass displacements at the DM and CM resonance frequencies.
These displacements, together with the SQUID slew rate limit, restrict operation to
<1kHz. The presence of incompletely shielded dc magnetic fields from the levitation cir-
cuits gives us signals from external accelerations much as for a device using persistent cur-
rent sensing. To avoid contaminating our modulated signal with this 'microphonic’ pickup,

we need to drive at frequencies above approximately 200 Hz.

The degraded white noise floor is a significant problem. Calculation indicates that
a faulty transformer design is coupling Johnson noise into the sensing circuit. We plan to
replace this transformer as soon as possible. Some further improvements on RF shielding
are also desirable. The SQUIDs already have RC filters on their inputs. We plan to in-

crease the filtering on the shielded twisted pairs at the low temperature end. It is also




possible to use a Quantum Design dc SQUID which has approximately two times better

intrinsic white noise performance in terms of amplitude.

SQUID amplifiers are also known to have 1/f noise. This is not a problem with the
SAGG because the modulation frequency can easily be chosen to be above the 1/f 'knee'

in the SQUID noise spectrum.

3.4.2 External vibration

External vibration effects are classified as translational, rotational, and centrifugal.
The seismic spectral characteristic is readily identifiable in the first two instances. It is
more difficult to identify effects from centrifugal terms because apparent gradient output is
the square of the angular velocity, rather than being linearly related to the ambient accel-
eration spectrum as in the first two cases. For a much more detailed discussion of these

effects, see ref. 1.

3.4.3 Bridge unbalance effects

When the bridge is not balanced, there is a non-zero demodulated signal at the
lock-in output. This signal is subject to drift for all the reasons dc signals can drift (i.e., op
amp offsets and thermoelectric potentials). Additionally, amplitude fluctuations in I, will
produce variations in the demodulated signal which are proportional to the bridge

unbalance.

An additional aspect of bridge unbalance is the possibility of saturating the lock-in
amplifier or exceeding the slew rate of the SQUID amplifier. The quadrature component
is not a problem; the background vibration pickup at frequencies comparable to the DM -

and CM modes is responsible for the largest signals at the SQUID input.




3.4.4 Drive current back action

The drive current produces forces which act on the test masses. Therefore, fluc-
tuations in the drive current will produce a time-varying force on the test masses. If the

fluctuations are a fixed fraction of /,,, then the force noise they produce should scale as
I3, because force is proportional to the square of current. This effect is expected to limit
the useful drive currents, and is the main theoretical reason why the sensitivity of the

SAGG is not expected to be as good as devices with persistent current sensing. Stable

room temperature electronics is important for minimizing this effect.

Another effect of the drive current is to produce an additional spring constant. At
sufficiently high sensing currents, this spring constant will decrease the displacement of the
test masses caused by a gravity gradient. Thus, in Eq. (3-3), @, actually increases with

I, although this effect is small at the relatively low drive currents we have been using.

Note that the circuit is arranged so that, in an ideally symmetric gradiometer, the
forces applied to the two test masses by the sensing circuit would be equal and be entirely

common mode. However, matching of coils and fixed inductors is only good to 3%. De-

tailed analysis shows that in the present SAGG it is not possible to balance the drive cur-
rent forces and simultaneously achieve bridge balance and scale factor balance, using
levitation currents alone. It may be possible to balance drive current forces by feeding a

portion of the drive current into a feedback transformer.

3.4.5 Temperature fluctuations

This can be important at low frequencies. In a symmetric gradiometer, penetration
depth variation with temperature would appear only in the CM sensing circuit, just as was
the case for drive current back action. Therefore, the temperature gradients across the de-

vice are more important than the variation in the mean temperature.

112



3.4.6 Microphonics

The drive current shakes the test masses at twice the drive frequency. It also
shakes the internal wiring in the device. In an earlier version of the device, there was con-
siderable higher harmonic content in the SQUID output which we believe to be due to
wires carrying bridge excitation currents shaking close to superconducting surfaces. Some
low frequency wire motion is also possible if hysteretic frictional forces play a role in the
wire motion. For present device, we have tried to minimize the amount of loose wiring.

Increasing the value of A would reduce the size of any such problems.




3.5 Gradiometer Performance Assessment

We use a turntable with a pair of lead blocks, 180° apart, to obtain an estimate of
the gradiometer scale factor. The turntable is placed so that the center of mass of the
bricks sweeps out a circle in the horizontal plane that passes through the center of mass of
the gradiometer. Figure 42 shows the calculated gradient signal as a function of time
(dashed line). The calculation models the source and proof masses only as point masses;
effects of higher order mass moments are ignored. The figure also shows a differential
mode signal, which represents the average of 65 traces (solid line). Both the calculated
and measured signals were digitally filtered with an 8-pole Butterworth filter at 1.2 Hz.
Clearly, the form of the data matches well to the calculated signal. The dc offset and scale
factor of the measured data were selected to minimize, in the least-squares sense, the dif-

ference between the measured and calculated values.

Figure 43 shows the power spectral density of the noise, referred to the SQUID
input current, at 0.8 Hz, after demodulation, plotted as a function of drive current. The

current noise has been normalized by the drive current, so it represents the noise in the
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time, s

Figure 42. Calculated and measured gradient signal from two lead blocks on a turntable.

Dashed line: calculated signal; solid line: measured signal.
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Figure 43. Ratio of current noise at the input of the differential-mode SQUID to the drive

current versus drive current.

bridge balance. Below approximately 10 mA, the noise drops as 1/, as would be ex-

is approximately three times the value speci-

4 lnoise

pected for SQUID noise. In this region, i
fied by Quantum Design. Above 10 mA, the ratio i, //,,. is approximately constant.
This is equivalent to a gradient noise of approximately 40 E/Hz"*. The origin of this noise
is unknown. It is seen on both the in-phase and quadrature response, and it shows a noise
spectrum which increases at low frequencies (below 0.5 Hz). This seems to rule out ac-
celeration or temperature effects and points to an electronics saturation effect or a poorly
understood drive current back action effect. The gradient noise at 0.32 Hz is found to be

about 30 E/Hz!”.

An increase in noise level at lower frequencies is apparent. Future development
plans are first to improve the RF isolation for the SQUID and eliminate possible Johnson
noise sources, such as normal metal transformer cores. The goal here is to achieve the ex-
pected level of SQUID noise performance. Second, we would like a better understanding
of the noise mechanisms at high current. This problem may be difficult to fix. Ifitisa

drive current back action effect, then improved sensing coil matching and finer pitch




would help. This can be easily done if we can acquire or produce lithographically pat-

terned coils. Presently our coils use wire of 0.1 mm (0.004 in) diameter.

Solving the white noise problems, and using a Quantum Design SQUID, would
give us approximately 2 E/Hz'? At that level of sensitivity we would be ready to seriously
examine the effects of large vibrational inputs on the gradiometer. Some type of multi-
axis cryogenic accelerometry would be desirable. All of the problems and partial solutions
used for the three-axis SGG would be relevant. If a multi-axis gradiometer was con-
structed using ac sensing, we could use the improved lower frequency springs that are in

the three-axis SGG, and thereby improve the basic sensitivity by about a factor of 8.
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4. PRECISION TESTS OF GRAVITY

One of the most demanding tests of superconducting inertial instruments is in a
precision experiment to search for deviations for the inverse square law of gravity. These
deviations, if they exist, cause an additional gravity error and thus limit the precision of in-
ertial guidance. The possibility of such departures from the inverse square law is sug-
gested by recent theories proposed to address certain inconsistencies in quantum
mechanics and gravity. Some theories predict the existence of light mass particles that
mediate a new fundamental (“fifth”) force between massive particles (Adelberger, 1991),
(Fischbach and Talmadge, 1992). Such a force would have a limited range, and would ap-
pear as a small Yukawa potential perturbation in the equation for the gravitational

potential:
0=-C2(1+0e™), (4-1)

where o and A represent the strength and the length scale of the new interaction, respeb—
tively. Gauss's law for a purely Newtonian field states that V?¢ = 0 outside the source
mass. However, the Yukawa term does not vanish. Note that V¢ is just the trace of the
gradient tensor:

2
V2¢=Z%—?=Zrii. (4-2)

X

Thus, an ideal 3-axis in-line gravity gradiometer, stationary in the inertial frame of refer-
ence, will measure no change in the vicinity of a moving source mass if the gravitational
force law is purely Newtonian. Any signal will be due to a deviation from this coupling.
Note that imperfections in the knowledge of the density distribution and path of the source

are irrelevant.

This is the basis for the experiment we recently performed using the 3-axis SGG.
Appendices D and E contain papers which describe the experiment in detail, so we will
only summarize it here. As described above, a stationary, ideal gradiometer would
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measure non-Newtonian coupling directly. In a real device, departures from the ideal gen-
erate non-zero signals. The challenge of performing this experiment, then, is to under-
stand these errors and to remove them to the greatest degree possible. There are two
basic categories of errors: those due to the non-ideality of the gradiometer itself, and those
due to the fact that the gradiometer could not be made completely stationary during the
experiment: motion of the source mass caused motion of the gradiometer. The two most
important ways in which the SGG differs from an ideal gradiometer are 1) that its output
contains random noise, and 2) that it does not make a truly differential measurement; rath-
er, it measures the difference between accelerations at two points separated by a finite
baseline. Because of the latter effect, it does couple to higher order gradients of the New-
tonian potential of sources that are not very distant compared to its baseline. However,
the coupling can be minimized by properly orienting the source with respect to the gra-
diometer, and, to the degree that relative position of the proof masses and the source mass

can be measured, this small error term can be removed.

The source mass used for this experiment, a large (1498 kg) pendulum which
moved in the vertical plane passing through the center of the gradiometer, caused the
building to move (albeit by a very small amount) as it swung. This motion, which is syn-
chronous with the source, couples to the gradiometer through three important mecha-
nisms. The first is centrifugal acceleration. A gravity gradiometer in a rotating frame of
reference measures not just gravity gradient, but gravity plus a component of angular rate
squared. Fortunately, this signal appears 90° out of phase with respect to the gradient sig-
nal, and so can be removed with phase-sensitve detection. The second coupling mecha-
nism is through angle with respect to local vertical. The component of the Earth's strong
(3000 E at vertical) gradient field along the axis of a gradiometer is a sensitive function of
the angle with respect to vertical. An optical lever was used to measure the tilt of the gra-
diometer and so remove this term. Finally, the gradiometer couples to linear and angular
acceleration because it relies on the alignment of the sensitive axes of each pair of compo-

nent accelerometers to cancel common accelerations. Imperfections in this alignment are

118



stable, so this term can be removed if the accelerations can be measured. The SGG does
measure linear accelerations along all 3 axes. Data from the tilt sensor gives the angular
acceleration about two horizontal axes. A ring laser gyroscope (loaned by the Phillips
Laboratory, Hanscom Air Force Base, Massachusetts) mounted on the dewar platform

provided the angular acceleration about the vertical axis.

After removal of all these terms, the measured value for o at A = 1.5 m with 20 er-
ror is (0.9 £ 4.6) x 10®*. Thus, no Yukawa potential is measured within the 2¢ error limit.
This represents an improvement by more than an order of magnitude over other measure-
. ments of o at this distance range (Moody and Paik, 1993). By properly adjusting the dis-

tribution of mass as a function of distance along the axis of a cylindrically symmetric shell,

one can produce a near-null source. An experiment using such a source could yield a hun-
dredfold improvement in the resolution of o at A = 0.1 — 1 m. In addition, the three-axis
SGG or the single-axis SAGG could be moved up and down a tower to search for a viola-
tion of the inverse square law at larger distances, with greater resolution than possible
with the earlier gravimeter-tower experiments (Eckhardt et al., 1988), (Speake et al,

1990).
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Appendix A

A Superconducting Six-Axis Accelerometer for Platform Control and
Space Applications

E. R. Canavan and H. J. Paik
Department of Physics and
Center for Superconductivity Research
University of Maryland
College Park, MD 20742

Approved for public release; distribution is unlimited.

Introduction and Background

Continued advancement in inertial naviga-
tion, platform stabilization and gravity survey
depends on the ability to resolve ever smaller
accelerations. Further progress in this direc-
tion depends on a clear understanding of the
basic physical limitations on the resolution of
accelerometers. One of the most critical lim-
itations is imposed by the Fluctuation — Dis-
sipation Theorem, which states that any
dissipation in a system causes random fluctua-
tions, with amplitude proportional to the
square root of temperature, in the variables de-
scribing its state (Brownian motion in me-
chanical systems; Johnson noise in electrical
systems).

Physicists working on probably the most
challenging motion measurement problem, the
detection of gravitational waves, realized a few
decades ago that this restriction can be circum-
vented by cooling instruments to the boiling
point of liquid helium (4.2 K). Not only are all
fluctuations reduced by a factor of ten from
room temperature values, assuming fixed dis-
sipation, but in many cases the dissipation in
the system can be made drastically lower. This
is particularly true for low frequency electrical
subsystems, in which superconducting materi-
als can be used to effectively eliminate
dissipation.

Additionally, a new device becomes avail-
able: the Superconducting QUantum Interfer-
ence Device (SQUID), an extremely low-noise
magnetic-flux-to-voltage amplifier. The mag-
netic flux in a superconducting loop is quan-
tized. However, if the loop is broken by two
superconductor-insulator-superconductor
junctions and a bias current is applied through
the junctions, the voltage across the junctions
is a periodic function of the number of flux
quanta in the loop. The Johnson noise on this
voltage is low enough that a very small frac-
tion of one flux quantum may be resolved. In
the laboratory, SQUIDs have demonstrated
energy resolutions per unit bandwidth ap-
proaching the Heisenberg uncertainty limit,
AE At > h/2r, where h is Planck's constant.
Although commercially available SQUIDs are
about a thousand times noisier, they are still by
far the quietest amplifier, and SQUID man-
ufacturers are making steady progress toward
matching the performance achieved by
researchers.

How can the unsurpassed magnetic flux
sensitivity of the SQUID be exploited for high
resolution acceleration measurements? Typi-
cally, these devices are operated in closed-
loop, or "flux-locked”, mode: a room tem-
perature controller feeds current back to a
small coil to cancel flux changes in the SQUID
loop. A second small coil (the input coil),
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inductively coupled to the loop, induces a flux
proportional to its current. In this configura-
tion, the system acts as a linear, high gain, ex-
- tremely low noise current-to-voltage amplifier.
Because of the controller, commercial systems
have small-signal bandwidths on the order of a
few tens of kilohertz and dynamic ranges (the
ratio of the maximum input signal to the power
spectral density of input referred noise) of
10° Hz'? below 100 Hz. The input coils are
relatively small (typically 2 uH), so SQUID
systems are optimally matched to low im-
pedance devices. The signal source must also
have very low resistance to keep Johnson noise
small. Thus, SQUIDs are usually used with
superconducting transducers.

The Meissner effect, the exclusion of all
magnetic field from the interior of supercon-
ductors, allows the construction of a very sim-
ple superconducting displacement transducer.
A superconducting coil connected to the input
coil of a SQUID forms a superconducting
loop. If'the loop carries a large current, it con-
tains a large, fixed number of flux quanta.
Now, if a large piece of superconductor in the
vicinity of the coil moves toward the coil, it ef-
fectively pushes flux quanta out of the coil and
into the SQUID input coil, where the change is
detected. Transducers of this type used in gra-
vitational wave detectors typically achieve dis-
placement sensitivities (power spectral density
of noise referred to displacement) smaller than
10" mHz". By using such a technique to
measure the displacement of a relatively com-
pliant mass-spring system, extremely good ac-
celeration sensitivity can be obtained.

Although the prime motivation for using
cryogenic devices is the reduction of noise,
low temperatures offer another important
benefit: greatly enhanced dimensional stability.
Coefficients of thermal expansion must go to
zero at 0 K. For most materials, the

coefficients at 4.2 K are approximately three
orders of magnitude lower than at room tem-
perature. Furthermore, creep is caused pri-
marily by thermally activated processes which
are frozen out at these temperatures. Addi-
tionally, many internal friction mechanisms are
also frozen out, allowing very low loss springs.

Building on the experience of the gravita-
tional wave detection community, the Univer-
sity of Maryland group developed the
Superconducting Gravity Gradiometer (SGG),
currently the most sensitive gravity gradiome-
ter. However, because of residual sensitivity
to platform motion, the most demanding appli-
cations of the gradiometer, such as global
gravity mapping from orbit, require extremely
good platform control in all six rigid-body de-
grees of freedom. In order to provide a sensi-
tive, compact and cryogenically compatible
readout device for such a controller, we in-
vented the Superconducting Six-Axis Accel-
erometer. To keep the instrument relatively
simple and compact, it uses only a single proof
mass, which is magnetically levitated to pro-
vide good compliance in all degrees of
freedom.

Physical Description

Figure 1 shows an exploded view of the
sensor. The 144 g proof mass is formed by
three intersecting, orthogonal square slabs,
50.2 mm on a side and 2.39 mm thick. The
proof mass fits into a cavity formed by mount-
ing the eight cubical coil-forms inside the cubi-
cal cavity (50.8 mm (2") on a side) in the
housing. Three sides of each coil-form face
the proof mass; mounted on each of these
sides are two concentric, spiral niobium coils.
We use the inner coils for sensing and the out-
er coils for levitation. When the proof mass is
levitated, there is a 0.3 mm (0.012") gap
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Figure 1. Exploded view of the SSA,

between it and the coils, but small stops on the
coils prevent it from moving more than
0.1 mm (0.004"). Although it is not displayed
this way on the figure, the SSA is usually
mounted in the "umbrella" orientation, that is,
with the center of the housing and two diago-
nally opposed vertices along a vertical line.
This makes all circuits symmetric with respect
to g, the gravitational field of the earth, thus
reducing the maximum magnetic field required
for levitating the mass. In this orientation, coils
in three planes are "below" the proof mass and
coils in the three other planes are "above" it.

Naturally, selection of the proper materi-
als is critical to the performance of the device.
The proof mass and all superconducting wires
are pure niobium, because niobium has the
highest known first critical field, H,,. H_, is the
highest field a superconductor can tolerate
while completely excluding magnetic flux.
(High 7 superconductors all have extremely
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low H_,, and thus would not provide the same
performance.) When using niobium, particu-
larly for the manufacture of fine wire, it is im-
portant to avoid any processing step that might
increase the concentration of interstitial impu-
rities, especially oxygen, since these increase
the ductile-to-brittle transition temperature.
Each junction between superconducting circuit
elements must be carefully welded to maintain
a high quality superconducting path through

the circuit.

The Magnetic Spring

We connect the four coils in each of the
three planes below the proof mass to form
three translational levitation circuits, which
provide linear levitation force along three
orthogonal axes. As Figure 2 shows, the four
coils are simply connected in series with a
transformer. The sets of coils above the proof
mass are connected to form rotational levita-
tion circuit, which provides torques about the
three axes. Figure 3 shows that the coils on
one side of the torque axis and the coils on the
other side of axis are connected in parallel with
a transformer.

We use the heaters shown in the two fig-
ures to trap flux or "store current” in the

from feedback
controller

lower
levitation

coils
AN

heater

from current
source

Figure 2. Translational levitation circuit.
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Figure 3. Rotational levitation (torquing) circuit.

circuits. By applying a heat pulse large enough
to momentarily raise the temperature of a small
section of wire above the critical temperature,
we break the superconducting path and force
any current passing through the charging leads
(labeled "from current source") to pass
through and induce a flux in the inductors.
When the warm section becomes supercon-
ducting again, the flux in these inductors is
trapped and remains absolutely constant after
the current source is removed.

Storing current in a translational circuit or
in the outer loop of the rotational circuit ("bias
current") creates a force normal to the plane of
the coils. The rotational circuit has an addi-
tional heater which allows us to store current
through the central branch of the circuit
("torque current"). This current adds to the
bias current on one side of the circuit and sub-
tracts from it on the other, creating a torque.
Normally, the currents in the rotational circuits
are an order of magnitude smaller than those in
the translational circuits.

The force between a superconductor and a
current-carrying wire comes from the interac-
tion of surface currents on the superconductor
and the current in the wire. The superconduc-
tor sets up surface currents to cancel any field
in its interior. The force between the surface
currents on a superconducting plane and the
current, /, in a nearby coil is A/%/2. The force
provided by the four translational levitation
coils, 2AF%, must cancel the component of the
proof mass weight normal to the coils, mgg - i
(plus a small force, which we ignore here, due
to the bias current in the coils above the proof
mass). The current required in each transla-
tional circuit to lift the proof mass is then

Iev=/’"g”' . 1
i o (1)

The force coefficient A is proportional to
the turns density squared. The wire-wound
coils of the present SSA have a turn-to-turn
spacing of approximately 100 um, giving
I, =55 A Such currents are rather easily
generated and handled. Furthermore, the cur-
rent is only needed for several brief (~1 min)
periods during the initial setup of the device.
In contrast, capacitive levitation schemes gen-
erally require thousands of volts to levitate sig-
nificant masses against the Earth's field. If
photolithographic techniques were used to
make the coils, a reduction in the line spacing,
and hence the required current, by an order of
magnitude could easily be achieved.

For a flat spiral coil parallel to a supercon-
ducting plane, the force coefficient is a func-
tion of the gap, x, but as x becomes small
compared to the coil diameter, A(x) ap-
proaches a constant value. In this case, the

coil inductance is L =x A. If the coil is con-
nected to a fixed inductor, L then the total flux
trapped in the circuit is (x A +L,) /. Because




of flux quantization, this quantity must remain
fixed even if the gap changes by &x:

(xA+Lf)I= [(x+ ox)A +Lf]([+ o). (2)
Thus,
8l = —1-Ddx_ 3)

Ax+Lf’

where we have dropped the small quadratic
(0x dI) term. Therefore, if L>> A x> A dx,
the change in current, and thus the change in
force, with a change in gap is very small. In
other words, the mass will act as though it is
supported by a spring with very small spring
constant.

Unfortunately, the gap dependence of
A(x) puts a lower bound on the spring con-
stant. If we approximate A(x) with a linear
function of x,

Alx+0x) = Alx) —y(x)dx, )]

then the force on a superconducting plane dis-
placed by a small amount dx from the equilib-
rium position is

OF(x+06x) =F+dF

=[AX) =y(x)ox)*2 . (5)
Therefore, even if L, is large enough to make
I negligible, there is still a change in force,
OF = —y(x)I*dx/2, giving an effective spring
constant of y(x)/%/2.

This minimum spring constant sets the
minimum realizable resonance frequency for
the translational modes of the SSA proof mass.
Taking the spring constant of a circuit with
four such coils and substituting the levitation
current given by Eq. (1) yields
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This is the frequency of a pendulum with
length A(x)/y(x). The quantities A(x) and Y(x)
are not calculable in closed form. However,
numerical computations show that the length
A(x)/¥(x) is a weak function of the gap. It is
also a weak function of the coil geometry; for
example, a solenoid and a pancake coil with
the same maximum diameter and number of
turns have values that differ by less than 30%.
For the present SSA, w_,/2m=11.3 Hz.

The derivation of the complete expression
for the rotational mode frequencies is rather
lengthy [1], but the following heuristic argu-
ment provides the proper expression for the
dominant term. Consider the coordinate sys-
tem shown in Figure 4. The coils of the y
translational levitation circuit are on the —y
side of the x-z plane. To first order, the total
inductance of this circuit remains unchanged
with a rotation of the proof mass about the x
axis, because the inductance of the two coils
on the —z side increases by the same amount as
the inductance of those on the +z side de-
creases. The same is true for rotations about
the z axis. Since the total flux is fixed, the cur-
rent does not change with rotation.

y

— |

Figure 4. The proof mass coordinate system.



With fixed current, the effective spring
constant is y(x)/?/2. If we assume that the
force of a coil acts at its center, a distance ¢
* from the axis of rotation, and that the displace-
ment at this point due to a rotation by an angle
86 is ¢ 86, then the torque due to the four coils
is

OT = cdF = c[4(YI*/2)(c80)]. @)

A rotation about one axis affects coils in two
planes. (A rotation about the z axis changes
inductances in the y-z and x-z planes.) There-
fore, the total angular spring constant is T =
4c*yIP. Again substituting Eq. (1), we obtain

=[5 = \/ (22 )A(xé;fy(x) > ®

where J is the moment of inertia of the proof
mass. Using the values for the present SSA,
®,/2n = 9.1 Hz. As mentioned above, this is
only an approximation; the actual frequency is
approximately 60% higher.

Up to this point, we have considered mo-
tion in only one degree of freedom at a time,
but the position and orientation of the proof
mass with respect to each coil is affected by
motion in several degrees of freedom. The
force due to the magnetic fields always. acts
perpendicular to the proof mass surface. This
causes the force in one degree of freedom to
be proportional to displacements in other de-
grees of freedom. Thus, the action of the le-
vitation circuits must be described by a spring
constant matrix with non-zero off-diagonal
terms. A full analysis of the proof mass mo-
tion is presented elsewhere [1]; here we pres-
ent only an intuitive derivation of these cross
terms.

Consider small motions of the proof mass
with respect to the coordinate system defined
by Figure 4. The coils in the y-z plane, the x

translational levitation circuit and the 6, rota-
tional levitation circuit normally apply a force
along the x axis. The total force,

ch=2A(Ifev —Iﬁias) , cancels the x compo-

nent of the proof mass weight. In the umbrella
orientation, F,_ is the same for all three axes.
A small rotation about the z axis, 86,, will
cause a component of this force, F,_ sin(50,) =
F, 86, to appear in the y direction. Similarly,
the same rotation 86, will cause a small com-
ponent, -F, 86, of the force from the coils in
the x-z plane to appear in the x direction.

A translation of the proof mass places a
torque on an orthogonal axis because of a
change in the effective moment arms. Consid-
er the coils in the x-z plane, which produce a
force F, in the y direction. We assume that
the force from a coil acts on a single point on
the proof mass directly above the center of the
coil, a distance ¢ from the z axis. The coils on
the +x side generate a torque cF,/2 about the
z axis, and those on the -x side generate
-cF, /2, so the total is zero. Now, if we dis-
place the proof mass by a small distance &x
along the x axis, the coils on the +x side pro-
duce a torque (c - 0x)F, /2 (relative to the cen-
ter of the proof mass) and those on the -x side
produce -(¢c + &x)F, /2, so the total is -F,dx.
The same displacement dx causes the coils in
the x-y plane to generate a torque F, 6x about
the y axis.

Applying the same reasoning to displace-
ments in all degrees of freedom, we find that
the spring constant of the levitation circuits
can be represented as

kKl FgST
k=




where & and 7 are the linear and angular spring
constants, respectively, Iis a 3 X 3 identity ma-
trix, and S is the unit antisymmetric matrix,

(10)

The cross-coupling terms due to these off-
diagonal spring constants can be strongly sup-
pressed by applying feedback.

An important property of a precision ac-
celerometers is the stability of its spring con-
stant. The spring constants of the SSA depend
solely on purely geometric quantities such as
L, A(x) and ¥(x). As mentioned in the intro-
duction, creep and thermal contraction are
negligible in most materials at liquid helium
temperature. However, to this point we have
been treating superconducting bodies as per-
fect diamagnetic objects, with zero field just
inside the surface and a large field just outside.
In actuality, the field drops exponentially with
distance inside the surface. The length scale
of the exponential decrease is called the pe-
netration depth, A, and it has a temperature
dependence given by

A0)

Ji-r)t

where A(0) is the penetration depth at 0 K.
For niobium, A(0) =47 nmand 7,=9.2K.

MDD = (11)

For the field, the effective gap is the dis-
tance between the plane passing through the
center of the coil wire and a plane approxi-
mately A(7) inside the surface of the proof
mass. It is this effective gap that remains
fixed, so if A(T) increases, the position of the
proof mass drops by an equal distance. Well
below the mass-spring resonance frequency,
®,, the acceleration a and the displacement x
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are related by @ = wx. Thus, the temperature
coefficient of acceleration is

da _ 2d\
ar = %ar
- MO) (1)3
T 1- @7y "\ e/

(12)

At T = 42 K, this coefficient is 4 x 10?°
m s°K"' for the present SSA. This implies that
if we require an acceleration sensitivity of
10" m s, we must keep the temperature noise
below 2.5 mK Hz'?. Temperature control at
this level can be provided by commercially
available instruments. If we attain higher ac-
celeration sensitivity, we will need tighter tem-
perature control.  Cryogenic devices with
temperature noise levels around 1 pK Hz'?
are routinely constructed. Furthermore, the
temperature coefficient can be lowered by an
order of magnitude by reducing the tempera-
ture to below the superfluid helium transition
temperature (2.17 K), a measure that has addi-
tional benefits for temperature control.

Displacement Sensing

We showed in the introduction that a large
superconductor, a superconducting coil, and a
SQUID can be configured as an extremely sen-
sitive displacement transducer. If the super-
conducting surface and the coil are flat and
separated by a small gap, the change in the
current of a closed circuit is directly propor-
tional to the gap, as given by Eq. (3). Since a
(flux locked) SQUID is a linear voltage-to-
current amplifier, the voltage out of the
SQUID controller is linearly proportional to
the displacement. This type of sensing circuit
is used in the SGG and in gravitational wave
antennas. Unfortunately, the closed-loop be-
havior of the SQUID system gives this



Current Oscillator

SQUID

Figure 5. Displacement sensing circuit. For
translational sensing, coils #1 and #4 are
below the proof mass; #2 and #3 are above.

configuration an undesirable feature. If the
signal exceeds the slew rate of the controller,
or if rf interference causes a temporary loss of
the SQUID voltage, the controller "loses
lock." When the system resettles, the output
voltage offset by an amount equivalent to an
integral number of flux quanta. Even if the dc
level is unchanged, the number of flux quanta
in the SQUID loop, and thus the dc displace-
ment, may have shifted. This property is espe-
cially objectionable when the output is the
input of a feedback controller, such as for plat-
form stabilization.

For this reason, the SSA uses an ac induc-
tance bridge, as shown in Figure 5. An oscilla-
tor with a current output stage, coupled
through a superconducting transformer, pro-
vides a sinusoidal current across two vertices
of the bridge. In the translational sensing cir-
cuit, the coils labeled #1 and #4 are below the
proof mass and those labeled #2 and #3 are
above it. If the coils are identical, then when

the proof mass is centered between the upper
and lower coils, all the inductanes are equal
and no current flows through the SQUID input
coil. An upward or downward displacement
unbalances the bridge, forcing current iy,
through the input coil.

More quantitatively, we can represent the
variation of inductance with displacement, dx,
using a truncated Taylor expansion:

L(8x) = Lo +A05x—%(6x)2. (12)
L, A, and v, are the inductance and its first
and second derivatives with the proof mass
centered. Solving the circuit equations for i,
and expanding to third order yields
. Ao 3
ISQ—loscLSQ+L08x+O[(8x) ]: (13)
. is the current through the secondary
of the transformer. For proper impedance
matching, Ly, = L, Since L, = x, A,, where x,
is the gap, Eq. (13) reduces to

where 7

(14)

i SQ = i osc%-

The rotational sensing circuits differ only
in the position of the coils. They are arranged
so that #1 and #4 increase with rotation about
the appropriate axis and #2 and #3 decrease.
In this configuration, the SQUID output is
proportional only to rotation about the axis, to
first order.

Thus, the signal from the SQUID, after
demodulation, provides a voltage proportional
to displacement of the proof mass from the
centered position. This has an important ad-
vantage for the SSA: centering the proof mass,
first at dc by choosing the proper set of cur-
rents to store in the various levitation circuits,
then over a wide bandwidth by applying feed-
back, is simply a matter of minimizing the




SQUID output. The proof mass must be cen-
tered as well as possible in order to minimize
cross coupling and certain other dynamical er-
- rors. Furthermore, any shift in the dc level due
to SQUID unlocks appears after demodulation
as a pulse, so the feedback controller can set
the proof mass back to its proper position fol-
lowing such an event. The scheme has an
additional benefit: because it is sensitive only
to the difference between the upper and lower
gap, it is insensitive to changes in the penetra-
tion depth caused by a change in the average
temperature of the proof mass. Only changes
in temperature gradients, which are small,
cause a response.

The frequency £ of the oscillator that drives
the bridge circuit, typically around 1 kHz, is a
compromise between bandwidth and dynamic
range. Demodulation of a signal in a band
around f,  produces a band of equal magnitude
around 2f, . This must be reduced by filtering
before the signal enters the SSA controller.
However, filters introduce low frequency poles
which limit the bandwidth of the closed loop
system. Thus, a modulation frequency at least
an order of magnitude above the closed loop
bandwidth (~100 Hz) is desirable. On the oth-
er hand, with the SQUID controller presently
in use, the maximum tolerable sine wave am-
plitude, and thus the dynamic range, decreases
with frequency. At 1 kHz, the dynamic range
is ~3 x 10° Hz'” with a frequency dependence
of approximately /'. This is not an inherent
limitation, systems having a constant dynamic
range of 2 x 10" Hz"? up to 6 kHz have been
built [2]. A previous version of the SSA used
a single SQUID coupled to all six sensing cir-
cuits. In this case, the oscillator frequencies
had to be widely spaced in frequency, so some
of the axes had a significantly lower dynamic
range than others. The present design uses
one SQUID for each circuit to avoid this
problem.

Acceleration Sensitivity

As we discussed in the introduction, ther-
mally induced mechanical and electrical fluc-
tuations limit the resolution of an
accelerometer. In the SSA, the dissipation of
the superconducting magnetic springs is low
enough that the noise of the SQUID amplifier
generally dominates over the Brownian motion
noise. The noise of SQUID can be modeled as
a simple current noise source across its input
coil with a constant power spectral density of
Pi,. Py, shows 1/f frequency dependence
below approximately 0.1 Hz, but because the
signal is modulated, it is unaffected by this red
noise. Well below the mass-spring resonance
frequency, we can estimate the equivalent ac-
celeration noise by combining Eq. (14) and the
relationship between displacement and accel-
eration, Sx=a/wi. We substitute 2P;, for
I, (Demodulation causes the SQUID noise
to contribute twice.) Using Eq. (6) for w,, we
obtain an expression for the equivalent accel-
eration noise:

isp

losc
- 4gr (’Yoxo )Pisg

5\ Ao

For a given coil diameter, the dimensionless
quantity (Y,x/A,) is a weak function of gap and
geometry. Thus, for a given SQUID and coil
size, minimizing P, depends primarily on maxi-
mizing i

osc’

(15)

lose

Unfortunately, there is an inherent limita-
tion on i, . The current through the sensing
coils produces a force on the proof mass pro-
portional to 2. at dc (and 2f,_, but the proof
mass does not respond at this frequency). At
zero displacement, the net force is zero

(assuming perfectly matched coils). When the
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proof mass moves up, the impedance of the
lower coils increases and that of the upper
coils decreases, so more current flows through
“the upper coils, increasing the downward
force. Hence, the sensing circuit provides an
additional spring constant which tends to low-
er the acceleration sensitivity. By including the
spring constant due to the sensing circuit in the
calculation of P,, we find that P, reaches a
minimum when i__ is large enough to double
the initial spring constant. This optimum 7, is
on the order of the levitation currents. With
the present SQUIDs (S.H.E. rf SQUIDs), for
which P;, = 10"AHz'”, the optimum i,
would give an acceleration noise of approxi-
mately 2 X 10" m s? Hz'?. For a more mod-
ern system, the Quantum Design dc SQUID,
P, 6x 10" AHz", after reflection
through an impedance matching transformer.
This is equivalent to an acceleration noise of
2x10”ms?Hz'" The equivalent angular
acceleration noise is 2 x 10"° rad s> Hz"”. In
a low g background, the acceleration sensitiv-
ity is at least an order of magnitude lower.

A practical limitation prevents us from us-
ing the optimum current. The coils are not
perfectly matched. Because of this, the force
on the proof mass is not zero when it is at a
position which balances the bridge. This dc
force is a problem because it depends on the
amplitude of the oscillator. Drift in the oscilla-
tor will cause a changing force on the proof
mass, and hence a drift in the acceleration out-
put. We can estimate this acceleration by cal-
culating the total force on the proof mass when
the parameter A for two lower coils differs
from-that of the two upper ones by 0A. Sim-
ple circuit analysis gives this force as 8Ai2 .
If i, changes by a small amount &7, the result-
ing shift in the acceleration output is
8a=28Ai,0i/m, or in terms of relative
errors,

. logical one.

AR

A z osc

We want to set 7 low enough so that os-
cillator noise does not dominate over SQUID
noise in the useful bandwidth of the device.
Because of the temperature dependence of
critical components in the voltage-to-current
output stage, even a well designed current os-
cillator will have significant red noise. The
SQUID output, after demodulation, has little
excess red noise above the millihertz regime.
Thus, the worst oscillator noise is at the lowest
frequency that we expect to use, approximate-
ly 1 mHz. We estimate that at this frequency,
a current source using the best available com-
ponents should be stable to 10 ppm. The force
coefficients A are matched to about 1%. Set-

ting Eq. (16) equal to Eq. (15) (times the
square root of frequency) gives a limiting i
of 90 mA. Even with this limitation, perform-
ance is quite good. Substituting i, = 90 mA

back into Eq. (15) yields an acceleration noise
of 8 x 10" m s? Hz"” and an angular accelera-
tion noise of 6 x 10% rad s? Hz'?, using the
current SQUIDs. Of course, if the signal fre-
quencies of interest are higher than this, the

limitation is relaxed. For frequencies above a

" few Hertz, the noise of the oscillator is white

and low enough not to matter (assuming the
present SQUIDs are used).

This limitation on i__ is purely a techno-
The dimensions of the present
wire-wound coils cannot be controlled to bet-
ter about 100 um. Using standard photolitho-
graphic techniques, thin film coils with
dimensional tolerances close to 1 um should be
easily ~manufacturable. In this case,
dlnA would be small enough that this error

source will no longer be relevant. Thin film

devices of high quality niobium (such as the
SQUIDs) are routinely manufactured, although
making reliable, high current (hundreds of




milliamps) superconducting junctions between
the films and wires will require some
development.

The noise levels calculated for the current
design are a substantial improvement over
those of a previous version of the device. In
that model, all six bridge circuits were con-
nected in series directly with the SQUID input
coil. Unfortunately, the impedances are not
correctly matched in this configuration. Addi-
tionally, the secondary of the feedback trans-
former was not large enough to minimize the
resonance frequency of the translational
modes; resonance frequencies were typically
21 Hz. Improving the impedance matching
and lowering the resonance frequency will re-
duce the acceleration noise in the current de-
vice by approximately one order of magnitude.
For example, the measured acceleration noise
of first model of the device was
3x10°ms?Hz"?, using i _ = 0.23 A in one
of its translational sensing circuits.  This
matches the value calculated from its parame-
ters to within 25%. An angular acceleration
noise of 7 x 10” rad s® Hz'” was measured on
an angular sensing circuit with i = 0.48 A
For the same current, the acceleration noise of
the current design should be
3.0x10""ms?Hz'". The improvement in
angular acceleration noise will only be by
about a factor of 4, because the dominant term
in the angular spring constant depends only on
the coil geometry, which is approximately the
same.

Controller

Many of the characteristics of the SSA
can be improved by using feedback. Because
of the low dissipation of the magnetic levita-
tion, the open-loop acceleration-to-voltage
transfer function of the SSA has an undesirable

large peak at the resonance frequency. In
addition, the levitation force is a nonlinear
function of position. Feedback flattens the re-
sponse and increases the bandwidth from ~13
to ~100 Hz. It also reduces displacement, par-
ticularly at low frequencies where the control-
ler gain is high, and thus improves linearity and
reduces displacement-related dynamical errors.
One of the most important dynamical errors is
the cross-axis sensitivity introduced by the off-
diagonal terms of the spring constant matrix
(Eq. (9)). Although ordinary single-input,
single-output feedback reduces cross coupling
substantially, the SSA controller uses a sophis-
ticated multiple-input, multiple-output
(MIMO) design to further suppress these
terms [3], [4].

There are several important considerations
in the design of the controller. One of the
main challenges when designing a room-
temperature controller for an extremely low
noise cryogenic instrument is making sure that
the controller does not eliminate the advantage
of using a cryogenic system by introducing
noise that greatly exceeds the SQUID noise.
Satisfying this criterion requires careful atten-
tion to the output stage of the controller,
which takes the voltages from the signal condi-
tioning stage and produces a current that is
coupled into the levitation circuits to produce
the feedback force. Any noise due to this
stage appears as an equivalent acceleration
noise. By choosing the voltage-to-current
conversion ratio to be low enough, the equiva-
lent acceleration noise can be made to match
that of the SQUID. However, a low V-to-I ra-
tio implies that the maximum tolerable signal is
small. Increasing the ratio increases the maxi-
mum signal, but at the cost of greater noise.
Equivalently, the controller can displace up-
ward (not increase) the dynamic range of the
system.
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Figure 6. Schematic drawing of the SSA in a
typical cryostat used for testing. A shaker,
used for applying accelerations, is not shown.

The controller must also not diminish the
dynamic range.  Because of the relatively
large dynamic range of available SQUID con-
trollers (on the order of 10’ Hz'?), as well as
the sensitivity of the SQUID to rf noise (such
as produced by digital systems), we choose to
implement the controller with analog circuits.
With this type of device we must choose the
various gains throughout the system to avoid

saturation in any stage when accelerations are
below the design maximum. We have also de-
signed the SSA controller to be stable and ro-
bust against changes in the accelerometer
parameters.

Ancillary Equipment

Although the proof mass of the SSA is
only 5 cm on a side, the overall system, includ-
ing all electronics and cryogenic hardware, is
presently quite large. With modest effort, it
can be substantially reduced. Figure 6 sche-
matically portrays the SSA in a cryostat similar
to one recently built for a gravity gradiometer.
The accelerometer and its superconducting cir-
cuitry hang inside a vacuum can from a long
rubber spring that provides isolation from
high-frequency (> 2 Hz) seismic noise. For
applications in a quiet environment, the device
could be mounted with a much stiffer suspen-
sion directly to the inside of the vacuum can.
The vacuum can fits into a liquid helium de-
war. The one shown here is 1.4 m high and
0.4 m in diameter. With careful design, one
could reduce the dewar height to less than
1m

The extreme sensitivity of SQUIDs to
electromagnetic fields that makes them so de-
sirable also makes it necessary to use great
care to shield them from undesirable fields.
We use several stages of isolation. First, the
SSA housing and connection boxes are super-
conducting, and all critical leads pass through
superconducting tubes. We have used a re-

sistive titanium alloy for the coil forms and for
the oscillator transformers because these will
strongly damp rf signals. The vacuum can is
also superconducting. The inner wall of the
dewar around the vacuum can and the entire
outer wall are of aluminum. In addition, we
use two concentric mu-metal shields inside the




dewar's vacuum space to reduce the back-
ground magnetic field. Finally, all leads enter-
ing the cryostat pass through EMI filters.

Applications

The extremely low noise of the SSA will
allow it to extend the state of the art in several
important applications. The initial impetus for
its development came from the need to meet
the extremely demanding platform motion re-
quirements on the proposed Superconducting
Gravity Gradiometer Mission [5]. The drag-
free satellite contemplated for this mission
would contain an SGG that would map the
Earth's gravity with unprecedented reso-
lution [6], [7].
cryogenic instrument, it can be mounted di-
rectly on the SGG. More importantly, al-
though the SSA can be operated and fully
tested in the one-g background field on Earth,
in orbit only small levitation currents are need-
ed to provide a bias for the feedback current.
Therefore, the effective spring constant, and
thus the equivalent acceleration noise level,
will be several orders of magnitude lower than
on Earth.

Using the SSA, actively controlled terres-
trial platforms could offer unprecedented quiet
seismic environments. Active quiet platforms
are under investigation for a number of uses.
The Seismically Stable Platform (SSP) at Hol-
loman Air Force Base is intended for testing of
inertial guidance systems. Similar devices
could be wused in laser interferometer
gravitational-wave antennas. The mirrors of
the interferometer must be mounted on seismi-
cally quiet platforms. Particularly at low fre-
quencies (<100 Hz), the level of allowed
platform motion is extremely small. Active
control of the SGG platform in the laboratory
could reduce several motion-related error

Because the SSA is also a

sources, and so improve measurements of the
inverse-square law of gravity [8].

Although gravity survey from orbit has the
advantage of providing complete global cover-
age, resolution of features substantially smaller
than 50 km is not likely in the foreseeable fu-
ture. However, at an altitude of 1 km, geo-
logical features with a size on the order of 1
km produce gravity gradient signals that even
a much less sensitive gradiometer can detect.
Unfortunately, an airplane is a hostile environ-
ment for sensitive motion detectors. An ac-
tively controlled platform can remove angular
and high-frequency translational motion.
However, control of translational motion at
low frequencies is not possible (using existing
autopilots), because the displacements needed
exceed the dimensions of airplane interiors.
An SGG/SSA package could be mounted on a
platform controlied by standard instruments,
and the SSA could be used to remove errors
from low-frequency translational motion and
residual angular motion of the platform.

The SSA could also be used alone for air-
borne gravity survey. In this case, the SSA
would be mounted on a simple passive isola-
tion platform along with a GPS receiver. Sub-
tracting the acceleration of the wvehicle,
obtained using the GPS data, from the accel-
eration measured by the SSA will give the
variation in local gravity. This technique has
been successfully tried in airplanes [9] and un-
manned balloons [10] using single-degree-of-
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freedom gravimeters. Because the SSA pro-
vides the motion in all six degrees of freedom,
it would allow the local gravity vector to be

" mapped. An SSA to be used in such a seismi-

cally noisy environment would have to be opti-
mized to maximize its dynamic range.
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DIAGONALIZING CONTROLLER FOR A
SUPERCONDUCTING SIX-AXIS ACCELEROMETER

B. Bachracht, E. R. Canavant and W. S. Levine}
University of Maryland,
Coilege Park, MD 20742

Abstract

A relatively simple MIMO controller which converts an instru-
ment with a non-diagonally dominant transfer function matrix into a
strongly diagonally dominant device is developed. The instrument,
which uses inductance bridges to sense the position of a magnet-
cally levitated superconducting mass, has very lightly damped reso-
nances and fairly strong cross coupling. By taking advantage of the
particular structure of the instrument’s transfer function matrix, it
is possible to develop a relatively simple controller which achieves
the desired decoupling. This controller consists of two parts. The
first part cancels the non-diagonal terms of the open loop transfer
function matrix, while the second part is simply a set of SISO con-
trollers. The stability of the closed loop system is studied using
Rosenbrock’s INA technique, which produces a simple set of con-
ditions guarantecing stability. The robustness of the closed loop
system with respect to multiplicative plant perturbations is studied,
and bounds on the admissible singular values of the perturbaton
matrices are found. Simulation of the closed loop system indicates
that it should easily achieve its performance goals.
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1 Introduction

An extremely sensitive! Superconducting Six-Axis Accelerom-
eter (SSA) is under construction at the University of Maryland?.
This instrument has been designed to monitor the platform mo-
tions of a Superconducting Gravity Gradiometer (SGG) which is
being developed for space applications [6]. The signals from the
accelerometer will be used to control the position and attitude of the
gradiometer platform. It is envisioned that the combined SGG/SSA
package will be flown in earth orbit to perform global gravity
mapping in the late 1990’s. A superconducting gravity gradiome-
ter/accelerometer system with such high sensitivity, if successfully
developed, will find many important applications in local gravity
survey, inertial guidance and fundamental physics.

A six-axis accelerometer measures translational and rotational
acceleration in all six degrees of freedom. The desired outputs of
the instrument are six signals, each proportional to the acceleration
of the device along one of the measured axes, and independent of
the accelerations along the other axes. Hence, the instrument should
ideally have a diagonal transfer function matrix. However, analysis
of the system model reveals that in open loop operation, the SSA
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' According to [71 the ultimate sensitivity is 1012 gHz'"2 for the Jational
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does not have a diagonal transfer function. In fact, due to the weakly
damped modes of the SSA, it does not even have a diagonally dom-
inant transfer function. The goal of the control aspect of the project
is to design an easily implementable compensator that will provide
a diagonal (or almost diagonal) closed loop transfer function matrix,
while also improving the linearity and bandwidth of the instrument.
By taking advantage of the particular structure of the open loop
transfer functon, it is possible to develop a relatively simple con-
troller which fulfills these requirements. This controller consists of
two parts, one of which cancels the effect of the non-diagonal terms
of the open loop transfer function, while the other is simply a set of

" SISO controllers. Using this approach, we reduce a MIMO design

problem to six independent SISO design problems. The stability
of the closed loop system is analyzed using Rosenbrock’s Inverse
Nyquist Array (INA) method [4], and a very simple set of stability
conditions is obtained. Also, since it is known that diagonalized
systems are not always robust, the robustness of the closed loop
system is evaluated by finding bounds on the maximum admissible
singular values of multiplicative perturbations®. Finally, the per-
formance of this controller is simulated, and the main results are
presented.

The paper is divided into five sections. Section 1 is an intro-
duction to the control problem. In Section 2, « brief description of
the SSA as well as its equations of motion are introduced. Based on
the linearization of these dynamic equations, a model of the trans-
fer functions of the SSA is derived. Section 3 describes the SSA
in closed loop operation and presents the proposed controller. An
analysis of the closed loop system stability, together with the means
to evaluate its robustness are also included. Secdon 4 presents the
performance achieved by the controller for a simulation based on
the open loop model derived in Section 2. Finally, Section 5 sum-
marizes the results of the paper and proposes directions for future
study.

2 The SSA in Open Loop Operation

2.1 Description of the SSA

The Superconducting Six-Axis Accelerometer (SSA) consists
of a housing within which a superconducting proof mass is magnet-
ically levitated. The magnetic field is created by persistent currents
stored in a set of superconducting coils. By monitoring the motion
of the proof mass with respect to the housing in all six degrees of
freedom, it is possible to determine the accelerations acting on the
housing in all six degrees of freedom.

Figure 1a shows a perspective view of the proof mass used in
the SSA prototype. The material is niobium (Nb), which becomes
superconducting below 9.2 K. Twenty four pairs of coils made of
niobium-titanium alloy (NbT1) are mounted on eight titanium alloy
(Ti-6Al-4V) coil forms like the one shown in Fig. 1b. Each pair
of coils consists of a sensing and a feedback/levitation coil. Fig. 2

2 Departiment of Physics and Astronomy, General Relativity Laboratory, directed by Professor
H. J. Paik.
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loop system.
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a) Proof mass perspective b) Coil form

Figure 1 Proof mass perspective and coil form

shows a cross-sectional view of the proof mass and the sensing and
levitation coils of the assembled instrument.

The twenty four levitation/feedback coils are connected to form
six circuits, each of which controls the displacement* of the proof
mass in one degree of freedom, without coupling to the other
degrees of freedom as long as the system has cubic symmetry,
and the displacements of the proof mass are kept small.

The twenty four sensing coils are connected to form six bridge
circuits, each containing four coils. Each bridge is driven with
an AC current source at a unique carrier frequency. Since the
inductance of a coil is proportional to the distance between the
coil and the superconducting proof mass [5], the circuit can be
arranged so that the output of each bridge is an oscillating current
proportional in amplitude to the displacement of the proof mass
in the corresponding degree of freedom. Each signal will be
independent of other displacements as long as the system has cubic
symmetry, and the displacements of the proof mass are kept
small. The six bridges are connected in series with the input coil of
a single SQUID (Superconducting QUantum Interference Device),
an extremely high gain, low noise magnetic flux to voltage converter
(see [3] or [9]). Because six unique carrier frequencies are used,
the SQUID output can be demodulated with the six carrier signals
to recover the displacement signals. These displacement signals are
to be used as inputs to the feedback controller.

2.2 Dynamic Equations of the SSA

For an accelerometer with a single degree of freedom, the
dynamic equations which relate the acceleration of the housing to
the position of the proof mass are relatively simple. In the SSA,
however, it is necessary to contend with both the translational and
rotational degrees of freedom. The rotational degrees of freedom
greatly complicate the description of the proof mass motion, making

it necessary to use three reference frames: an inertial reference
frame, a reference frame attached to the accelerometer housing,’

and a reference frame attached to the proof mass. The complete

derivation of the dynamic equations of the SSA is beyond the scope’

of this paper. An extensive analysis of the theoretical aspects of
the SSA can be found in [7] or [8]. The analysis presented below

follows this treatment, but extends the dynamic equations to include

the effect of the feedback currents.

Dynamic Equations of the Translational Axes. The equa-
tions of translational motion of the proof mass can be writien
8V (RP,P) - a
mari ko
‘ The displacements of the proof mass are defined as the position (translational displ
and oricntation (rottional disnlucements) of the proof mass in the housing reference frame. Hence,

zero displ pond: 10 tie position and jon where the principal axes of the proof
mass coincide with the housi fi frame.

i+ k=z,y,z, 1)

Figure 2 Coils distribution around proof mass

where

rf = k-th component of the proof mass translational displace-
ment,

RP = rotation matrix describing the orientation of the proof
mass in the housing reference frame,

V (R?,77) = potential energy of proof mass,

m = mass of proof mass.

The effective external translational acceleration applied to the proof
mass, a°, is given by

gt =— —g-— w”x#"—wﬁx( 'er'*') e L)
where

7P = proof mass translational displacement vector,

7# = housing position in inertial reference frame,

oF = angular velocity of the housing,

g = gravitational acceleration vector (in the intended use, g is
not constant).

The currents in the superconducting coils surrounding the proof
mass generate the potential energy V (RF,7P). The displacement
of the proof mass is contolled by these currents. 1ldeally, the
effective external acceleration sensed by the proof mass ( a@°), ie.
the measured acceleration, should be equal and opposite to the
acceleration of the housing ( #°). From Eqn. (2) we see that,
in order to equate the translational acceleration of the housing to
the effective translational acceleration of the proof mass, we must
keep the displacement of the proof mass 77, and its velocity #,
to a minimum.

An expression for V (RP,7P) can be found in [7] or [8]. In-
troducing the feedback currents into this expression, differentiating,
substituting in Eqn. (1), and linearizing the resulting expression,
we obtain for the r, degree of freedom (Note that we drop the
superscript p for the linearized quantities.):

;:: +w,2‘,7'z = 'f;%g + f_an'C' (oy - 6z) + kr,Ir,! + a;,

wy, = Tesonance frequency of the i-th translational degree of
freedom,

fpc = DC force applied by levitation current (must be equal
and opposite to the corresponding component of the proof mass
weight),

k,, = ratio of feedback current to feedback acceleration for the
i-th translational degree of freedom,

§; = linearized (see Eqns. (3), (4) and (5)) rotation angle of the
proof mass about the i-th axis of the housing reference frame,
I,, = feedback currsnt applied to the i-th translational degree

of ,frccdom.
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. Up to this point, we have assumed that no damping of the mo-
tion of the proof mass occurs. Actually, coupling to the strongly
damped experimental suspension and viscous damping by the resid-
ual gas in the vacuum chamber limit the Q of the resonant modes of
the SSA. The damping of the proof mass in the translational degrees
of freedom can be modeled by the addition of a velocity-dependent
term, (wy, /@, )z, to the equations of motion for the SSA, where
Q:, is the quality of the resonance for the translational x-axis. In-
troducing this term, we obtain the following dynamic equation for
i

Wy,

Fr+—=f +wling = M+M(9y—9z)+k,:l,,l+a§.
Ty m m

Similarly, the equations of motion for ry and r, can be obtained:

foc |, foc
e+l -0+, 4a

Ty

- w,
ry+Q

- 2y =
Ty +wp Ty =
Ty

- Wy, . 2 ¢
ot =, +w/r;, = + a:.

L]

s

foc | foc (6 —8,) + kn. I,
m m

Dynamic Equations of the Rotational Axes. The equation

of rotational motion of the proof mass about the x-axis can be

written:
8V (RP,7P) _
1067~ %o

6° + 3)

where

I = moment of inertia of proof mass about principal axes,
67 = rotation angle of proof mass about the i-th axis of the
housing reference frame,

and the effective external rotational acceleration about the x-axis of
the proof mass (af) is given by

aof = —zbf + -}2-
where w{’ = -th component of rotational velocity of housing.

As with the translational degrees of freedom, in order to equate
the rotational acceleration of the housing ( u‘ziH ) to the effective
rotational acceleration sensed by the proof mass ( af), we must
keep the rotational displacement of the proof mass 67 and its
velocity, 67, to a minimum.

Substituting V' (RP,#”) into Eqn. (3), and proceeding in the
same way as with the translational degrees of freedom, we obtain
for 6, (Note that we drop the superscript p for the linearized
quantities.):

(oo - ofer) —wlép + iz, @

foc

é‘:_*__‘dﬂ;éz +h)3:02 = T

Qs, (rz—ry) - kﬂxIGx, +az, )

where

wg, = resonance frequency for the i-th rotational degree of
freedom' of the proof mass,

Qg, = quality of the resonance for the i-th rotational degree of
freedom of the proof mass,

kg, = ratio of feedback current to feedback acceleration for the
i-th rotational degree of freedom of the proof mass,

Ipl, = feedback current applied to the i-th rotational degree of
freedom of the proof mass.

In an analogous way, we obtain for 6, and 6,:

5o, W, . 2 foc
0,, + Q_gygy + woyay = -T (Tz - 7‘,) - kgng’/ + a;,

foc

bt gtb: +f 6, = 12

s,

(rg = 7<) = ko, Jo,, +a.

2.3 Transfer Functions of the SSA

Taking the Laplace transform of the linearized equations of
motion derived in the previous section, we can obtain the relations
between the proof mass displacements,” the external accelerations,
and the feedback currents. these relations can be written in matrix
form by defining the vectors:

(o) =la+ e oy e arv el of of atf,
s@&)=, L, L, 6 L,6 L, L],

F(s)=[r: vy, r. 6. 6, 92]’,

(where dependencies on s have been omited for brevity) and ma-
trices:

T.(s) O 0 0 —fm fm
0 T, (s) 0 Im 0 —fm
0 0 T.(s) ~fm fm 0
P(s)= . ,
©=1"9o 5 i ni © o
-fr 0 fi 0 Ty(s) 0
fi —fr 0 0 0 Ty (s)
K= dlag {er’ kr,a kfn _k9,1 _kqu '"k9,} )
©)
where
2, Wi 2
Ti(s)=s +—Qfs+wi, t=7;,7y,7:,05,60,,6;,
R m
Substituting the above definitions, we obtain;
¥ (s)7(s) = KI; (s) + a” (s). 0

Eqn. (7) expresses the feedback currents and external accelerations
as a function of the proof mass displacements. Inverting this
relation, we obtain an expression for the position of the proof mass
as a function of the external acceleration and feedback currents:

7(s)= ¥ (s)K [f,(s) +K-1aE (s)] . ®)
Finally, since the signals available to the controller are the output

voltages of the sensing circuits, we need to relate the position of the
proof mass to the output voltages. This relation is modeled by:

Vout (s) = Z(s)7 (s),
where

Z(s) = diag {£&, (5), &, (5),&, (s), €, (s) 6o, (5), &6, (s)} ,
Vout (8) = [V, Vi, Vi, Vi, Vo, Vo),

and
We

S+ w,

) i=rzvry1rzaez‘7€y)92$

&i(s)= o
where

¢i = DC gain of sensing circuit for the i-th degree of freedom,
€ (s) = transfer function between i-th displacement and corre-
sponding output voltage,

ws = cuttoff frequency of low pass filter in the sensing circuit.
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Figure 3 Predicted open loop response: (1)
V. (8) /ag () @) Vo, (8) /ag (s) (or Vg, (s) /az (s));
(3) Vs, (s) /a (s) (or Ve, (s) /at (s)).

The low pass filter in the sensing circuit exists because of the modu-
lation/demodulation required to efficiently sense the displacements.
As already mentioned, all six currents are frequency multiplexed
through a single SQUID. There are practical advantages to this, but
a significant disadvantage is that w, is relatively small. Taking into
consideration the sensing circuit response, we rewrite Eqn. (8) as
follows:

Vour (8) = E() ¥~ (5)K [f, (s) +K'aF (3)] .
N, oo
G(s) V
Under the assumption of perfect geometry:
T, (s) =T, (s) and Ty, (s) =Tp(s) for i=1z,y,z,

Hence,
1
G(s) =
©) = T SR~
MG Lfa L g g o
) Tl T ™ ™ ]
ffn MO fifn 0 i
T.(s) }';‘(i) ] _T;‘};g m m
2| T 6 TH o oA 0 g
0 =0 T ﬁ;’{ Ta(s)
-fr 0 fr #5 5 Ti't'{
L f1 —fi 0 FE RS Tt -

where
M(s) =T () Tp (s) — f1fm.

The transfer functions of the operating device have been measured.
The results of two of these measurements are compared with the
predicted transfer functions in Appendix A. These results indicate
that the model is indeed quite accurate. Fig. 3 shows the predicted
transfer functions between a translational acceleration (a2) and the
different outputs of the open loop system. An important point
revealed by this model is the fact that neither G (s) nor G~ (s)
are diagonally dominant matrices on the juw axis. )

3 Design of a Diagonalizing Controller

3.1 The SSA in Closed Loop Operation

In the previous section, we demonstrated the importance of
minimizing the displacements and displacement velocities of the
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Figure 4 The SSA as a closed loop system

proof mass. This can be achieved by adding a feedback controller,
thus operating the instrument as a null detector (Fig. 4). The second
important requirement is for the closed loop transfer function matrix
to be diagonal, or at least diagonally dominant. Let us first consider
the problem of diagonalizing the closed loop transfer function.

From Fig. 4, the transfer function between acceleration input
af and controller output current Iy is:

Ir={I+F(s)G(s)| ' F(s)G(s)K'aF

or
I=[I+G ()P (s)) T K'a". (10)

' Mathcmaﬁcally, this transfer function could be made perfecdy di-

agonal simply by choosing F (s) = G~ (s) g(s), where g(s) is a
scalar transfer function which could be designed to produce any de-
sired closed loop transfer function. This scheme, however, is based
on the assumption that one could construct a controller F (s) such
that G~ (s) F~1 (s) = Ig~! (s). In practice, it is very unlikely that
such an identity could be made to hold over a wide frequency range
mainly because of plant uncertainties. In the SSA, realizing such an
F(s) would be especially difficult because the modes of the SSA
are very lightly damped ( @y, are up to 1500), making the product
G~1(s) F~1(s) particularly sensitive to model uncertainties.
Since attaining the perfect diagonalizing controller is not feasi-
ble, we could place a weaker assumption on F (s), requiring only
that it produces a diagonally dominant G~! (s) F~! (s). The stabil-
ity of the resulting closed loop system could then be partially ana-
lyzed using Rosenbrock’s Inverse Nyquist Array (INA) [4] method.
For the SSA, however, finding a relatively simple F'(s) which
would ensure diagonal dominance of G~1(s) F~! (s) proves par-
ticularly difficult because of the high values of Q,, and Q..

A 3.2 The Controller

Eqn. (10) does not immediately suggest any other choices of
F(s). However, if one takes the output voltage of the sensing
circuit as the output of the system, the closed loop transfer function
becomes:

Vout = [F(s) + G~V (s)) ) K1GE. @1
One can see from Eqn. (11) that the closed loop transfer function
can be made diagonal by choosing F (s) such that:

F(s)=Dg(s)+C(s),
where

(Da(8))yj = (8 =1 (67 (8))yj5 Hi=1Lwn6 (1)

and

C(s) = diag {cr, (s) 1 cr, () ¢r, (5), 0. (5), ¢, (5) €0, ()} -
Thus, Dy (s) cancels the non-diagonal elements of G~ (s). Assum-
ing such cancellation to be possible, the obtained transfer function
is diagonal, and the diagonal elements of the closed loop are:

b (s) = &) /T(5)
14+ &i(s) ki(s) e (s) /Ti(s)’

i =Tz,Ty, 72,08, 6:.

(13




Figure 5 Complete solution with D (s)
as a physical realization of Dy (s)

This solution is still unsatisfactory. We see that the Eqn. (13) is not
a typical SISO wansfer function, since the controller ¢; (s) does not
appear in the numerator. This problem can be solved by dividing
the controller in the way shown in Fig. 5, obtaining the closed loop
transfer function

Tout = =C(3) [G™* (s) + Do () + C(s)] "' K~1aF,
with the diagonal elements:

kifi(s)ci(s) /Ti(s) (1 .
THRE WA/ (5) =ttt
(15)
So, under the assumption that Dy (s) can be implemented to cancel
the non-diagonal elements of G~!(s), C(s) can be designed as
six independent SISO controllers, transforming our MIMO design
problem into six independent SISO design problems.

In the present case, however, perfect cancellation of the non-
diagonal terms of G~ (s) by Dy (s) is impossible because the non-
diagonal elements of G~!(s) are not realizable. Thus, a crucial
question for the design is: How accurately do the elements of D (s)
( D(s) being a realizable approximation of D, (s)) have to approx-
imate the non-diagonal elements of G~ (s)? A realizable transfer
function can be made to fit well at low frequencies, but it diverges
from the desired function at high frequencies, since the non-diagonal
terms of G~ () are not proper. We will show, based on Rosen-
brock’s INA method, that the cancellation of the non-diagonal ele-
ments need not be perfect; it is sufficient that G~ (s)+D (s)+C (s)
be diagonally dominant in order to guarantee the stablility of the
closed loop system. Fortunately, the diagonal terms of G—? (s) for
the SSA are of higher order than the non-diagonal terms, so at high
frequencies G~! () is naturally diagonally dominant. Thus, D (s)
needs to be an accurate approximation of the non-diagonal terms of
G~1(s) only over a limited frequency range. For the SSA, 'a rela-
tively simple implementation of D (s) will ensure this condition.

So far, we have addressed the problem of diagonalizing the
closed loop transfer function. The second important consideration
for operating the SSA in a closed loop configuration is to minimize
the displacements and displacement velocities of the proof mass
with respect to the housing. In particular, in order to minimize
the steady state error of the proof mass displacements, we include
an integrator in each clement of C(s). It is thus convenient to
write C(s) as C(s) = C(s)£, where { is a diagonal matrix of
integrators, and ¢ (s) is a diagonal matrix whose elements are all
asymptotically stable. The convenience of this notation becomes
clear in the following section.

(14

hii(s) =

3.3 Imperfect Cancellations: Stability
and Robustness

In probing the effects of imperfect canceliation, it is useful to
write D (s) as Dy (s)+ AD (s), where Dy (s) perfectly obeys Egn.
(12) and AD (s) is an error matrix. Substituting into Eqn. (14), we
obtain the closed loop transfer functon:

H(s)=—C(s)[67"(s)+ Do (s) + AD(s) + C (s)] ' K.
. (16)
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Before proceeding to study the effect of AD () in the closed loop
transfer function H (s), we note that K is diagonal and constant.
Also, C(s) is diagonal, and we assume all its elements to be
asymptotically stable. Hence, we can limit our analysis of stability
to the following transfer function:

Hr(s) = f (671 (s)+ Do(s)+ AD() +C(s)] ™. (7

This transfer function corresponds to the system shown in Fig. 6.
We will carry out the investigation of stability and robustness of
the SSA on this reduced system.

Stability. We study the stability of the reduced system by ap-
plying Rosenbrock’s Inverse Nyquist Array (INA) stability criterion.
Definition 1. We define the contour € as the contour consisting

of the imaginary axis from s = —rj to s = rj, together with a
closing semicircle of radius 7 in the right-hand plane, r being
large enough to include any right-hand plane poles or zeros
of the relevant function.

Theorem 1. (Inverse Nyquist Array stability criteria) Consider the
system shown in Fig. 7, where Q(s), and F(s) are nxn
transfer function matrices. Let Né)_, and Né_, sp for1 <
1 < n, denote the number of counter-clockwise encirclements
about the origin of the image of contour C under the mappings
[Q71(9)];; and [Q71(s) + F(s)],, respectively. If the
following conditions hold:

CL. Q7! (s) is row (column) diagonally dominant on C,

C2. Q7 (s) + F(s) is row (column) diagonally dominant on C,
C3. No poles of [Q~!(s)],; fall on C,

C4. No poles of {Q" (s)+ F(s)], fall on C,

CS. @(s) is stable,

then, the closed loop system shown in Fig. 7 is stable if and only

if:
ZNa—x = Z N5-1+F
=1

=1

18

For the system in Fig, 6,] F(s) = sAD(s) and Q(s) =
[sz"l (8) +3Do(s) + C’(s)] . Note that, by definition, C (s)
is diagonal and sDq(s) cancels the non-diagonal elements of
sG~1(s). Note also that since sAD (s) has no diagonal elements,

[:xG"1 (s)+sDo(s)+C (3)]§

. (19)
[sc-l (s)+3Dg (s) + € (s) + sAD (s)] e

In order to translate the conditions C1 ~ C5 for the reduced
system into conditions on C(s) and D (s), we make two initial
assumptions about C (s):

Al.
Det [C"l (s)] #0, Vs|Re(s) > 0.

That is, C (s) is asymptotically stable.
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Figure 7 General configuration
A2.
Det [sG-l (s) + sDo (s) + é(s)] #0, Vs|Re(s) > 0.

That is, 1 [G™2 (s) + Do (s) + C (s)] 1 is asymptotically sta-
ble.

Under these assumptions, we verify conditions C1, C3, C4, C5
and equality (18). By A2, Det [sG'l (s) + sDo (s) + C(s)] #

0, Vs € C. Thus, since the matrix [:;G‘l (s)+sDo(s) + C'(s)]

is diagonal, C1 is satisfied. By Al, C (s) is asymptotically stable,
so the elements of € (s) have no poles on C. Clearly, the diagonal
elements of sG~! (s) have no finite poles. Hence, C3 is satisfied.
C4 is equivalent to C3 by Eqn. (19). C5 is fulfilled by A2. Equality
(18) holds by Eqn. (19). Therefore, under Al and A2, C2 implies
the stability of the closed loop system.

Robustness. Since it is known that diagonalized systems often
suffer poor robustness characteristics (see, for example, [1]), for a
complete evaluation of any diagonalizing scheme it is important to
obtain a measure of the resulting closed loop system robustness.
To obtain such a measure, it is common to introduce some kind
of perturbation to the nominal plant (i... some possible deviation
from the analytic model of the plant), and calculate the bounds
within which such perturbation must remain so as to guarantee
the fulfillment of a given performance criteria. The perturbation
to be intoduced is chosen so as to reflect the robustness of the
closed loop system with respect to the kind of errors we expect
the analytical model to make. In our case, the analytical model
derived in section 2 has been verified .to be accurate in the low
frequency region, but no information on its behavior at higher
frequencies is available. In the presence of such uncertainty, the
use of multiplicative perturbations is appropriate for the evaluation
of the closed loop system robustness. In the following analysis, the
performance criteria to be fulfilled will be the closed loop systems
stability. Let L;(s) and L,(s) denote multiplicative input and
output perturbation matrices respectively, i.e. of the form:

G'(s) = G(s)(I + L;i(s)), Li(s) = input perturbation matrix,

G'(s)=(I+L,(s))G(s), L,(s)= output perturbation matrix.

We make two basic assumptions on L;(s) and L, (s). First, we
assume that G’ (s) remains a strictly proper system. Second, we
assume that the number of unstable poles of G’ (s) is the same as
that of G (s). Under these assumptions, it is well known how to
obtain bounds on the maximum admissible singular values of L; (s)
and L, (s). Consider again the system shown in Fig. 7. Using
the spectral norm ||-|,, these bounds are given by the following
inequalities (see [1] or [2]):

FLiGu) <e [T+ FGIQG)T], @
F[LGe) <g[T+QUu)FGu)7], @D
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Figure 8§ Equivalent representation of the reduced system

where & [M] and g [M] denote the maximum and minimum singular
values of the matrix M, respectively.

Following the same arguments presented in the stability anal-
ysis, it is sufficient to analyze the robustness characteristics of the
reduced system

Hp(s)=1[6(5)+D(s)+C()] ™,

which can also be represented as shown in Fig. 8. Let us define
the functions & [L; (jw)] and & [L, (jw)] as follows:

1Ll = 2 [T+ ((CGo) +iuD ) 6 )
(22)
5 [Lo(jw) = ¢ [I+jw (6(w) (€ (jw) + jwD (jw)))’l] :

Then, according to Eqns. (20) and (21), it follows that the maximum
admissible singular values of L;(s) and L, (s) for the reduced
system shown in Fig. 8 are given by & [L; (jw)] and & [L, (jw)]
respectively.

4 Simulation

4.1 Design Procedure and Simulation Parameters

Design Procedure The stability conditions obtained in the
previous section can be translated into simple design constraints
on C(s) and AD(s). First, C(s) is designed with asymp-
totically stable elements (Al), and such that the transfer func-
ton of the ideal closed loop system (AD(s) = 0) has the
desired performance. This will automatically fulfill the re-
quirement that £ [G=1(s) + Do (s) + C(s)] ™ be asymptotically
stable (A2). Once C(s) is chosen, D(s) is designed as
a realizable approximation of Dg(s), and so that the matrix
[G™1(s) + Do (s) + C (s) + AD (s)] is diagonally dominant (C2).
The fulfiliment of these conditions ensures the stability of the closed
loop system.

The transfer functions of the closed loop system, as well as the
singular value plots 6 [L; (jw)] and & [L, (jw)] are then simulated.
Based in this simulation, both C (s) and D (s) can be adjusted in
order to improve the closed loop system performance. By repeating
this procedure, it is possible to arrive to a controller design which
achieves the desired performance.

Simulation Parameters The following design is based on
experimental parameters measured on the actual prototype (see
[7] or [8]). These parameters are the resonance frequencies and
resonance qualities of each degree of freedom. The resonance
frequencies can be measured to great accuracy, and the measured
values agree with the predictions of an existing theoretical model of
the SSA (see [7] or (8]). It has also been verified that they do not
change noticeably over long periods of time. Thus, a fairly accurate
knowledge of the resonance frequencies is assumed. The qualities
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Figure 9 V;, (s) /at (s), diagonal eclement of
ideal closed loop transfer function AD (s} = 0

of resonance, on the other hand, are not very well characterized.
Throughout most of the data taking, the pressure in the vacuum
chamber is high enough that the Q; are determined by viscous
damping. Because of a small vacuum leak, the pressure, and thus
the different Q;, varied significantly from day to day, although they
always remain high (Q,, > 100, Q, > 1000).

4.2 Simulation Results

Implementation of C (s). To achieve its goals, C(s) is de-
signed to minimize the displacements of the proof mass, to increase
the bandwidth of the instrument (from about 20 Hz. for the trans-
lational degrees of freedom and 15 Hz. for the rotational degrees
of freedom to about 100 Hz. for both), and to provide adequate
damping to the closed loop system. Using standard SISO design
tools, and iteratively adjusting C (s) as described above, we obtain
the following transfer function for c; (s):

0.4x10° (32 + &5/ + a?) (/754 +1)
kiojws (s/1068 + 1) (3/6283 +1)(s/6912 4+ 1) s’

for i = r;,ry,r;,6:,6,,8,, where, under the assumption that
an accurate estimate of w; is known, we take &; = w;, Q ~
4. This design fulfills Al and A2, while providing satis-
factory performance to the ideal closed loop transfer function
—C () [G~'(s) + Do(s) + C(s)) ' K-'. As mentioried in the
previous section, an integrator is included in each element of C (s)
to minimize the steady state displacement of the proof mass. Fig. 9
shows the closed loop transfer function of the ideal system for the r,
axis. A 100 Hz bandwidth with adequate damping is achieved. The
design is robust to changes in Q;, as long as Q; is high (Q; > 50).
Finally, the resulting open loops have over 12 dB gain margin and
54° phase margin.

ci(s)=

Implementation of Dy (s). We now proceed to design D (s)
as a realizable version of Dy (s). First, we verify that the matrix
[G™1(s) + C ()] is already diagonally dominant. Thus, even if
any or all the connections of D (s) arc broken, the closed loop
system still remains stable. For D(s) = 0, Fig. 10 shows the
transfer functions between a translational acceleration (a) and the
different outputs of the closed loop system as predicted by the model
derived in section 2. Although the closed loop system is guaranteed
to be stable, and the different axis of the instrument are already
partially decoupled, it is required for the satisfactory performance
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Figure 11 Closed loop response with designed
D(s): (1) V;, (s)/as (s); () Va, (s) /a& (s) (or
Ve, (s) /az () 3) Vi, (s) /ag (s) (or V4, (s) /at (s))

of the instrument to further decouple them. Fig. 11 shows the same
transfer functions after the following D (s):

0 0 0 0 fm  ~fm
0 0 0 ~—fm 0 fn
Sw, K-1 0 0 0 fm —fm O
(8 + 5w,) 0 —-fr fr O 0 0
fir 0 —f1 0 0 0
~fr  fi 0 0 0 0

has been added. Clearly, by adding the suggested D (s) we have
succeeded in effectively decoupling the different axes of the device,
without affecting the performance of the diagonal clements of the
closed loop transfer function.

=1 (s)

Robustness. In the previous section we emphasized the im-
portance of evaluating the robustness of the proposed diagonalizing
scheme. Also, & [L; (jw)] and & [L, (jw)] were defined as the max-
imum admissible singular values of L;(jw) and L, (jw). These
bounds arc plotted in Fig. 12 and Fig. 13. As with other plots
in this paper, these plots were obtained assuming the same drive
currents in all the sensing circuits. For this choice of parameters,
G (s) has a condition number close to one (at almost all frequen-
cies), causing & [L; (jw)] and & [L, (jw)] to be very similar to each
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values for output perturbation matrices

other. Hence, unless otherwise mentioned, our conclusions apply
equally well to either L; (jw) or L, (jw). It is also important to
remark that the bounds we obtain assume that only one kind of per-
turbation is present at a time, i.c. we assume that L; (jw) =0 when °
we evaluate the robustess of the system with respect to L, (jw),
and vice-versa. '

Based on Fig. 12 and Fig. 13, we obtain the following
conclusions: first, for frequencies above 100 Hz, the robusmess
of the system increases rapidly with frequency. This is an essential
requirement of the closed loop system robustness, since (as already
mentioned) it is expected that the accuracy of the analytic model
will decrease as frequency increases. Second, since the design of
the proposed controller is based on the assumption that the analytic
model is accurate at low frequencies, it is now possible to verify
how accurate indeed it needs to be. At its minima, which occurs
at w & w, (for-input perturbation matrices), & [L; (jw)] can take
values as low as -1.66 db, which roughly means that gain errors (
& [L; (jw)] automatically considers the worst possible phase errors)
in the model of up to *80% (at the worst possible frequency) will
not cause the closed loop system to become unstable. In other
words, the stability of the closed loop system is guaranteed if the
actual transfer function of the plant is within $80% (in terms of
gain) of our analytic model.
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Is this 2 good margin? From Egns. (20) and (21), we obtain
the following inequalites:

—_— S —
T [Li(j )151+2[F(jw)62(jw)]’

1

2[Q (w) F (jw)}
These inequalities show that for any closed loop system where the
output is required to closely “follow” the input (or signal to be
measured), the need for high gains over the frequencies of interest
will limit the admissible singular values of both input and output
perturbations to values close to one. In other words, for a closed
loop system to be considered robust, it is necessary to have an
accurate knowledge of the plant over the frequency regions where
high open loop gains are being applied. In fact, the presence of an
integrator in the design of the controller automatically forces the
minima of & [L; (jw)] and & [L, (jw)] to be at most one. Hence,
the largest admissible model error must always be smaller than
+100%. Considering that this is the most we can hope for, and that
the model has been shown to be accurate over the frequencies in
question, *80% is a very reasonable margin.

Lastly, there is another interpretation of & [L; (jw)]. From Eqn.
(22),

& [Li(jw)] =

L, (jw)] <1+

1
7 [(€ (@) + D () 6 (1) (T + (€ () + D (1)) G ()]

and (C (jw) + D (jw)) G (jw) (I + (C (jw) + D (jw)) G (jw)) ™
is the transfer function between a signal at the input of the plant and
the currents fed by the controller. This transfer function corresponds
to the complementary sensitivity of the system. Hence, inverting
the plot in Fig. 12, we obtain the norm of the compiementary
sensitivity. The obtained complementary sensitivity behaves as ex-
pected for a system where the output is required to closely follow
the input over a certain frequency range. Noise signals at the input
of the plant are passed through in the same frequency band as the
acceleration signals we desire to measure, and are attenuated out-
side of this band. This is a well known disadvantage of systems
where the output is required to follow the input closely. It should
be clear that this is unavoidable, since such noise signals are in-
jected into the system at the same point as the accelerations we are
trying to measure (although they may arise from different sources,
such as white noise in the controller electronics, etc.), and cannot .
be attenuated without attenuating the desired signals.

5 Conclusions

We have developed a relatively simple MIMO controller which
converts an instrument with fairly strong cross coupling into an al-
most decoupled system, while also achieving the desired increase
in bandwidth and improved damping of resonances for the diagonal
terms of the closed loop' transfer function matrix. This controller
consists of two parts, one of which cancels the effect of the non-
diagonal terms of the open loop transfer function, while the other
is simply a'set of SISO controllers. A straightforward approach
is possible because the particular structure of the open loop trans-
fer function allows the cancellation of its non-diagonal terms by a
fairly simple clement. The development of the rest of the controller
then reduces to the problem of designing a set of independent SISO
clements. The stability of the system is studied through Rosen-
brock’s INA stability criteria, and a simple set of conditions which




guarantee stability is obtained. As it is well known that INA based
designs can be sensitive to coupled perturbations, the robustness of
the system with respect to input and output perturbation matrices is
evaluated. The performance of a controller designed according to
the suggested diagonlizing scheme is simulated, and the characteris-
tics of the obtained closed loop system are found to be satisfactory.

As for future work, it would be useful to study the possible gen-
eralization of the suggested technique to a broader class of MIMO
problems. In this respect, it is worth noting that since the marrix
G~ (s) is not diagonally dominant, the application of the INA sta-
bility criteria would have been impossible without the introduction
of the matrices Dg(s) and AD (s) (or some other artifice). Nev-
ertheless, the obtained stability conditions apply also for the case
D (s) = 0, suggesting possible generalizations of the INA method.
Finally, once the technical challenges of implementing the design
(in a way that does not worsen the noise level of the SSA) have
been overcome, the behavior of the actual system must be com-
pared with the predictions.
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Appendix A. Predicted and Measured
Transfer Functions
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Figure 15 Non-diagonal transfer function, Vj, (s) /L, ()

We include a comparison of the predicted and the measured
transfer functions in two cases. The first transfer function corre-
sponds to a diagonal element of G (s), V4, (s) /I,,! (s). The second
transfer function corresponds to a non-diagonal element of G (s),
Vs, (3) /I’*J (s). For the second comparison (Fig. 15), the pre-
dicted transfer function does not correspond accurately to the mea-
sured transfer function near the lower resonance peak. This error
can be explained by the fact that the current simulation program
assumes the resonant frequencies and resonance qualities of all the
rotational degrees of freedom to be the same (similarly for the trans-
lational degrees of freedom). Clearly, in the actual system this is
not true. A more accurate model which takes into consideration the
imperfections of the device is alrcady being tested.



Appendix C

MATLAB simulation parameters

The following parameters were used in the MATLAB simulations used in
- Design of controller, theoretical,
- Design of the controller, implementation,

- Noise analysis.

Y AN A NN NN NN NN AN AN S NANA SN Y SN NN A AT YT AN NN

%% this file includes all the definitions which characterize the %/

%, SSA-Tb. **
o T T T

%Physical parameters:

YANAAN NS YA NANA N YA Y VYN

g = 9.8; Ymt/s"2

Mass = 0.144; %Kilograms

c = 1.35E-2; Yt

d = 3.05E-4; YA

I = 4,0E-5; #Moment of Inertia

lambdalev

0.01724; %H/mt




lambdaSen = 0.007856; %H/mt

Gamalev = 15.32; JH/mt "2

Betalev = 0; pa:s

Lolev = 5.T04E-6; %H, Levitation coil inductance in
% balanced position

LoSen = 2.6599E-6; %H, Sensing coil inductance in
% balanced position

Lsq = 2E-6; ZH, Squid input coil, reflected to
% sensing circuit

Lf = 662E-6; JH, Secondary inductance of feedback
% transformer

Mf = 63.5E-6; %H, Mutual inductance feed-secondary

Ls = 2.66E-6; %H, Secondary inductance of sensing
%  transformer

Ms = 195E-6; %#H, Mutual inductance sens-secondary

SquidGain = 1.0E4; %#Volts/Amps (Range 3)

VIConverterRatio = 1.; %Amps/Volts

Vomax = 10.0; %Volts, maximum output voltage

% Transformations from dimmentionless to dimentional units

e T o o o o e ottt

Eta = d/c;

Pslambdalev = lambdalLev*d/(Lolev);
PslambdaSen = lambdaSen*d/{(LoSen);
PsGamalev = Gamalev*d~2/(Lolev);
PsBetalev = Betalev*(d/c)~2/(LoLev);

% Maximum Measurable Accelerations

YNV AAR A Y NN NN AN AR N AN AN A YA AN

raccmax =

aaccmax =

1E-4;
SE-4;

% Levitation Currents:

/Maximum measurable translatiomal acc.

Jmaximum measurable rotatiomal acc.
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VAR AN AN AN AN AN AN AN AN R)

frac = 0.1;

LxLevitationCurrent = 4.88554; %Amps

AxLevitationCurrentl = LxLevitatiomCurrent*frac;

(i.e. we assume approx. .488 A in thetal circuits)

% Oscilator voltages for semnsing circuit:

YASNANAN SN N NN NN NN AN SN SN TN SN S NY YAy Y

LxVosc = 100E-3; %Volts rms

L]

AxVosc 100E-3;

We assume 100mV xms in all channels

%Sensitivity setting in Lock-in amplifiers:
(ASAANA NSNS AN VAN NAN TN SV S YA S A NS AA Y Ay AN S

LxSens 1; #Volts

AxSens 1;

We assume 1V sensitivity in all channels (gain of

putput stage of lock-in amplifiers = 10)

% Plant parameters

PN ANASNNA S AN YA

Qrx = 300;
Qax = 1500;
Wrx = 12.95%2%pi;

Wax = 13.07*2*pi;

(resonance frequencies based on mathematica model)

%% Design parameters
AN A A A A AV A A VAN AN

%% Diagonalizing element (D(s))
YYYYA NN VAAANAAAN AN AN YN AN S NN AAAA

n = 10;
Ws = 125%2%pi;




pole corresponding to stage: Ws*n

%% Diagomal controller (C(s))
(YA AAS SN AN NN A SANN A YA NN YIS A

z1l = 120;
22,23 = complex conjugate pair with Wr = Wr + .5 Hz, § = 4;

pl = 170;
p2 = 200;
p3 = 1200;
p4 = 0;

%% Definition of Rho (VCCS)
VYA AANA NN NI NSNS A AN AN A YA AN

Rhorx = raccmax/{(Vomax*Krx);

Rhoax = aaccmax/(Vomax*Kax);

(designed so that at masimum expected acceleration the output voltage

is 10 V)

Gain = 0.28E6; (Carefull how this is interpreted, has to be associated with

corresponding program)
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Gauss’s Law Test of Gravity at Short Range

M. V. Moody and H. J. Paik

Department of Physics and Center for Superconductivity Research, University of Maryland, College Park, Maryland 20742
(Received 2 October 1992)

A null test of the gravitational inverse-square law can be performed by testing Gauss's law for the
field. We have constructed a three-axis superconducting gravity gradiometer and carried out such a test.
A lead pendulum weighing 1500 kg was used to produce a time-varying field. This experiment places a
new (20) limit of @=(0.9 £4.6)x10 ™% at A =1.5 m, where a and A are parameters for the generalized

potential ¢ = — (GM/r)(1 +ae =),

PACS numbers: 04.90.+¢, 04.80.+z

Various types of light-mass bosons have been suggested
to answer open questions in particle physics and gravity.
The presence of these bosons would give rise to a
Yukawa-type potential and thus appear as a violation of
the gravitational inverse-square law. Numerous experi-
ments have been performed to search for a composition-
dependent as well as a composition-independent violation
of the inverse-square law [1]. The experiment reported
here is unique in that it employs a new instrument, a su-
perconducting gravity gradiometer (SGG), and is based
on a new approach, a test of Gauss’s law for gravity. The
result is a=(0.9+4.6)x10™% at A=1.5 m, where
¢=—(GM/r)(1+ae ") and the error corresponds to a
20 level. This represents an improvement of 2 orders of
magnitude over our previous result [2] and more than an
order of magnitude over the best existing limit [3].

A differential equivalent of the inverse-square force
law is Gauss’s law for the field, V-g= —4xGp, where
g=—V¢. By summing the outputs of an in-line gravity
gradiometer rotated into three orthogonal directions, one
can perform a near null test of the inverse-square law.
The advantage of this type of experiment is its reduced
sensitivity to the source density and metrology errors [4].
The residual sensitivity to the source errors results from
higher moments of the gradiometer which couple to
higher-order field gradients.

Each axis of the SGG consists of two spririg-mass ac-
celerometers in which the proof masses are confined to
motion in a single degree of freedom along a common
axis, and are coupled together by superconducting cir-
cuits. Platform motions that are common to both ac-
celerometers are canceled by adjusting the ratio of two
persistent currents in the sensing circuit. The sensing cir-
cuit is connected to a commercial SQUID amplifier to
sense changes in the persistent currents generated by
differential accelerations, i.e., gravity gradients. A
second sensing circuit is used to sense common accelera-
tions. The design and analysis of this gradiometer have
been previously published [5].

A three-axis gravity gradiometer is formed by mount-
ing six accelerometers on the faces of a precision cube.
The accelerometers on two opposite faces of the cube
form one of three in-line gradiometers. Aligning the di-
agonal of the cube with the vertical equally biases the

three gradiometer axes with respect to the Earth’s gravi-
tational acceleration (see Fig. 1). This orientation also
permits the cyclic interchange of the gradiometer axes by
a 120° rotation about the vertical.

In a perfect gradiometer the platform accelerations
could be canceled to the degree to which the persistent
currents could be adjusted. In actuality, the sensitive
axes of the component accelerometers are not perfectly
aligned. This misalignment results in a residual coupling
to platform motion. The gradiometer alignment errors
can be described in terms of a misalignment between the
directions of the sensitive axes, Si=d,—nf;, and a
misalignment between the average direction of the sensi-
tive axes and the baseline vector, &I =(,+1;)/2—1.
The gradiometer couples to translational accelerations
and tilt through &1, whereas &/ results in coupling to an-
gular acceleration [6]. The errors in sensitive axes align-
ment will also result in a misorientation of the gradiome-
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FIG. 1. Schematic side view of the SGG and supporting

hardware. The laser beam passes down a center tube (not
shown) in the cryostat. The three vertical supports are sym-
metric relative to the center tube.
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ter axes, 8X. This error will result in an error in the
orthogonality among the three in-line gradiometers and
among the cyclic orientations for an individual gradiome-
ter axis.

Even in a perfectly aligned gradiometer, angular
motion about an axis other than its own sensitive axis
produces centrifugal acceleration errors. If the gradiom-
eter platform is stationary in the Earth’s reference frame,

Zl‘,-‘f)-(l+e,-){3x/§(i-l"-i)(8i,--i)+202—
J

~ 3G+ g)- 208, 3+ 6h/VD) |

Here, € is the error in the gradiometer scale factor, I is
the gravity gradient tensor, 0 =QRc+090,, T represents
the acceleration of the platform, g represents the gravita-
tional acceleration, / is the gradiometer baseline, and 8k
is the persistent current misbalance. This result indicates
that, after summing over the three orthogonal orienta-
tions, only the vertical components of the error terms are
significant.

Figure 1 shows a schematic of the apparatus. The
SGG is composed of six cylindrical accelerometers, 10.2
c¢m in diameter and 8.9 cm long, mounted on a cube, 10.2
cm on a side. It is cooled inside an Al vacuum can with
liquid helium contained in a vapor-cooled cryostat. Mag-
netic isolation consists of the SGG niobium (Nb) ac-
celerometer housings, two layers of superconducting Pb
shield, and a double wall Mumetal shield at room tem-
perature. The vibration isolation of the SGG is passive
and consists of three vertical suspension legs, and three
springs located in the horizontal plane passing through
the SGG center of mass. These springs increase the hor-
izontal and torsional resonance frequencies of the SGG
isolation ta well above the signal frequency. The primary
purpose of the vibration isolation is to reduce SGG plat-
form motions at frequencies where the seismic noise can
cause overloading of the SQUID amplifiers. Voice-coil
type transducers are incorporated into each leg of the sus-
pension. By varying the magnitude and phase of the
currents through the coils, vertical motion or tilt (in any
direction) may be applied to the SGG. The tilt motion is
sensed with a two-dimensional optical lever consisting of
a laser, a beam splitter, an x -y photodiode at room tem-
perature, and a flat mirror mounted on the SGG cube
(perpendicular to the diagonal). The cryostat and
Munmetal shields rest upon a turntable driven by a stepper
motor. The rotational accuracy of the turntable was
determined to be better than 10 ™4 rad.

Since we are approximating the gradient by subtract-
ing acceleration over a finite (nonzero) baseline 1, 0.1905
*0.0003 m, there is a residual Newtonian term that
must be removed to obtain V-g. Errors in the source
metrology limit the accuracy to which this term can be
removed. The source used in this experiment is a
1498+ 3 kg pendulum confined to a single plane of
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the centrifugal acceleration error is given by 2[(a- Q)
x(i-60,)+ Q- 50,1, where O is the angular velocity
of the Earth and 841, is the angular jitter of the platform
[6].

To perform the experiment, the gradiometer is rotated
twice by 120° about the vertical to obtain a measurement
of V-g with each gradiometer axis. The sum of the three

| cyclic orientations j of gradiometer axis ; is given [7] by

%[3(::-2)2—nzl(zai,--i+5i,--i) —-3(8-2)[(5]; x4,)- 7]

(N

I

motion by an Al tube and bearings at the pivot. The pen-
dulum mass is 2 0.324 m diam, 0.0064 m thick spherical
Al shell with a Pb core. The eccentricity of this mass is
less than 0.01. The distance between the pendulum pivot
and the center of the sphere is 3.300 = 0.005 m. The po-
sition of the pendulum is obtained using a 13 bit optical
shaft encoder attached to one end of the pivot shaft. The
amplitude of the pendulum is maintained to within
% 0.0004 rad (0.5 bit) per cycle by a pneumatic drive
attached to the other end of the pivot shaft. The vertical
and horizontal positions of the pendulum pivot relative to
the SGG center were 4.583 +0.003 and 4.235 + 0.003 m,
respectively. The turntable, SGG mirror, and pendulum
pivot were leveled to better than 0.0002 rad. The
pendulum’s plane of motion was aligned with the center
of the turntable to better than 0.0002 rad. A numerical
model of the experiment, in which the SGG accelerome-
ters were modeled as point masses confined to a single de-
gree of freedom, and the source was modeled as a simple
pendulum, gives (—4.04+0.11)x10"3 E (1 E=10~?
s ~2) for the residual term due to the finite baseline.

When the gradiometer axes are permuted by rotating
the turntable, a displacement of the center of mass of the
SGG, &r, leads to an error in the measurement of V-g.
The SGG was centered on the turntable rotation axis by
observing the SGG mirror with a transit as the turntable
was rotated through 360°. The resolution of this mea-
surement, *+0.0004 m, places an upper bound on ér.
The numerical model indicates the error due to 5r is min-
imized when the initial turntable orientation ¢; is such
that the sensitive axis of one gradiometer is in the
pendulum’s plane of motion pointing away from the pen-
dulum. This orientation (denoted as 0°) was chosen for
the experiment resulting in an upper bound of 1.34
%10 ™4 E for this displacement induced error.

The model was also used to investigate and minimize
the SGG nonorthogonality error. Equation (1) indicates
that this is accomplished by minimizing I'zz. If, as in the
present experiment, the analysis is limited to measure-
ments at the pendulum frequency Jp of 0.2681 +0.0001
Hz, then only the fundamental component of I'zz con-
tributes to the error. The vertical gradient, I'zz, of the
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source as a function of SGG polar angle has a zero at
54.74°. By positioning the pendulum so that at its max-
imum amplitude of 34.06° the mass is at a polar angle of
54.23°, we were able to reduce the fundamental com-
ponent of I'zz to 0.009 E.

Equation (1) shows that the torsional acceleration of
the platform, 9-Z, couples to the measurement of V-g
through the z component of sixf. To make an accurate
determination of this component, the torsional mode of
.the SGG platform was excited using the turntable. This
motion results in a peak in the power spectrum at the tor-
sional frequency, f;, due to (5/xi);, and a second peak
at 2f, due to centrifugal acceleration. The magnitude of
the 2f, peak gives a measure of the torsional motion am-
plitude. Combining this with the magnitude of the fi
peak, we obtain (5/x i), =(2.72+0.03)x107% (0.59
+0.03)x107% and (—0.77£0.03)x10™* for axes 1,
2, and 3, respectively. To measure - Z, a ring laser gyro
(RLG) was mounted to the turntable with its sensitive
axis vertical. Since the SGG platform modes are much
higher than the source frequency, this measurement of
the torsional motion of the turntable should translate
directly to the SGG platform. The RLG data were
recorded and analyzed in the same manner as the SGG
data discussed below. Calibration of the RLG was
achieved using the Earth’s rotation. A total of 130 sets of
254 records was recorded over a span of 14 days.
Analysis of these data gave a torsional motion amplitude
of (3.22+0.09)x107% rad at f, in phase with the
source. The quoted error is 2 standard deviations of the
130 sets.

In order that the gradiometer noise not be limited by
seismic noise, sensitivity to acceleration must be mini-
mized. Sensitivity to vertical acceleration is minimized
by shaking the SGG vertically and adjusting the ratio of
the persistent currents in the differential-mode sensing
loops to null the outputs To extend this balance to three
dimensions, the SGG is tilted with amplitude 6 in 2 de-
grees of freedom at a frequency f [« (2x) ~'(gg/1)'?
=] Hz] so that the translational acceleration error

(e« 8gg/l) dominates the angular acceleration error
{=0(2xf)2]. This permits determination of the com-
ponents of the 6ii’s. A three-dimensional balance against
acceleration is then achieved by combining each gradiom-
eter output, I';, with the acceleration outputs, G;, accord-
ing to I'/+X;s;;G;, where the coefficients s;; are deter-
mined from the &i’s. After performing this balance, the
noise performance of the SGG was approximately 0.07
EHz™"2 at f,. The tilt measurements also permit abso-
lute calibration of the accelerometer outputs.

For the experiment, the three gradient and three ac-
celeration outputs from the SGG were recorded along
with the pendulum position for 33 nights. The turntable
was automatically rotated 120° twice each night. After
acquisition, the data were time averaged, using the pen-
dulum position as a reference, with a record length of six
pendulum cycles. Approximately 710 records were ob-
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tained per orientation per night. The dominant analog
filter was a 1.6 Hz, low pass, 8 pole butterworth. During
the averaging, unlocks in the SQUID amplifiers were
detected, and the record in which the unlock occurred
was rejected. To minimize effects of people in the labora-
tory, all records with a gradient fast Fourier transform
value at f, more than 5 standard deviations from the
mean were also rejected. These two rejection criteria re-
sulted in a loss of about 0.2% of the data.

The SGG acceleration data reveal the motion of the
SGG platform induced by the source. A power spectrum
of these data shows that, upon summation of the three cy-
clic orientations, the platform acceleration is below the
random noise level at the fundamental signal frequency.
This result indicates that translational acceleration effects
generated by the pendulum at f, contain no significant
vertical component.

Figure 2 shows that gradiometer output of axis | over
six cycles of the pendulum for each of the three orienta-
tions and their sum. The remaining structure in the sum
is primarily in the second and fourth harmonics, and is
due to residual coupling to the vertical motion of the lab-
oratory induced by the pendulum at these frequencies.
The standard deviations of the three gradiometer outputs
(after summing over the three cyclic orientations) for the
33 nights of data were 1.81x107% 7.15x107% and
1.70x 10 ™4 E for axes 1, 2, and 3, respectively. For axes
1 and 3, the 33 data sets exhibited a Gaussian distribu-
tion and the standard deviations compared favorably with
the short term power spectral density noise value of 0.07
EHz™'2. The data from axis 2 exhibited a drift of 2.90
over the 33 data sets. The drift for axes I and 3 was 1.4¢
and 0.9, respectively. Large changes in the current bal-
ance were observed for axis 2, requiring that it be rebal-
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FIG. 2. The output of the differential mode sensing circuit of
axis 1 for each of the three orientations and their sum. The
time axis covers six cycles of the pendulum. The dc level is ar-
bitrary.
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TABLE L. Dominant errors.

20 level (rms)

Error source (E)
Random 2.48x10~¢
Gradiometer rotation axis <0.95x10~*
Gradiometer axis nonorthogonality < 0.40x 10 ~*
Residual torsional acceleration 1.12x10™4
Source metrology 1.08x10~4
Magnetic coupling =107
Total 3ix10™4

anced several times over the course of the experiment.
No such problem was observed for axes 1 and 3. There is
some evidence of a systematic effect arising from the
large dc current induced in the loop containing the
SQUID input coil, which would result from a leakage of
the magnetic flux out of a sensing circuit loop. Conse-
quently, we feel the data from this axis are substantially
less reliable than that from axes 1 and 3, and our final re-
sult is given using only the two stable axes.

In addition to 33 nights of data in the 0°, 120°, and
240° orientations, 3 nights of data were recorded in the
60°, 180°, and 300° orientations. Summing the data at
the 0° and 180° orientations for each axis eliminates re-
sidual coupling to horizontal and tilt motion of the floor,
the dominant measurement error. Comparing the result
with the value predicted by the model allows calibration
of the SGG to better than 0.5%. Taking into account the
torsional motion error would improve the calibration ac-
curacy; however, the near null nature of this experiment
makes further improvement unnecessary.

After time averaging the 33 data sets, the data are
Fourier transformed, using a Hanning window, and
separated into components in-phase (real) and out-
of-phase (imaginary) with the source. These results
are (3.59~1.311)x1073, (—1.88—2.26/)x10~3, and
(—6.22~1.18/)x10 7 E for axes 1, 2, and 3, respective-
ly. As previously discussed, a quadrature component will
arise from centrifugal acceleration due to angular motion
of the platform mixing with the Earth’s rotation. Thus
the out-of-phase component should agree for the different
axes, and it is within 1 standard deviation for the two
stable axes, 1 and 3.

After subtracting the term due to torsional motion of
the floor, the sum of the gradients in the three orienta-
tions is (—3.87+0.45)x10 > E for axis | and (—4.10
*0.37)x1073 E for axis 3. Thus the two axes agree.
Taking a simple average of these two axes reduces the
relative contribution of the 8r and &/ errors, and gives,
after subtracting the finite baseline term, our final result
of (0.58+3.10)x10™*E.

The error budget for this result is given in Table I
The random noise comes from the scatter of the XI5
data. The gradiometer rotation axis error represents an
upper limit corresponding to the worst case in the direc-
tion and magnitude of 8r. The axis nonorthogonality er-
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FIG. 3. 20 limits on the Yukawa coupling constant set by
this experiment.

ror is computed from the model using the maximum error
in the polar angle, 0.001 rad. The residual torsional ac-
celeration error comes from the scatter of the RLG data.
The source metrology error arises from the uncertainties
in the geometric parameters that are used in the numeri-
cal model. The magnetic coupling error has been ob-
tained by combining a null response of the gradiometer to
an applied, time-varying field with the estimated residual
magnetic contamination of the pendulum mass.

Figure 3 shows the 20 limits on a positive and negative
a vs . The strictest limits are obtained at A =1.5 m and
are a=(0.9+4.6)x10 "% Table I shows that the total
error could be reduced by a factor of 3 by improving the
random noise of the gradiometer and the gyro. A much
more substantial improvement on the result can be
achieved with the construction of an improved source.
We are in the process of designing a near null source that
does not shake the building.
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APPENDIX E

Null test of the inverse-square law of gravity

H.J. Paik and M.V. Moody .
Department of Physics and Center for Superconductivity Research
University of Maryland, College Park, Maryland 20742, USA

ABSTRACT: A differential equivalent of the inverse-square force law is Gauss's law
for the field, V-g = -4nGp, where g = -V¢. Thus, by summing the outputs of an in-
line gravity gradiometer rotated into three orthogonal directions, one can perform a
near-null test of the inverse-square law. The primary advantage of this type of
experiment is its reduced sensitivity to the density and metrology errors of the source.
We have developed a three-axis superconducting gravity gradiometer and carried out
such a test using a 1500 kg lead (Pb) pendulum to produce a time-varying field. This
experiment places a new (20) limit of a = (0.9 + 4.6) x 10“ at A = 1.5 m, where a
and A are parameters of the generalized potential ¢ = -GM/r (1 + ae™). This result
represents an improvement of an order of magnitude over the best existing limit at

A =15 m. To achieve further improvement in the resolution of a with the present
instrument, a near-null source is needed. We plan to carry out an improved test of the
inverse-square law using a long cylindrical shell as the source. Looking farther into
the future, we hope to be able to conduct a geological-scale null experiment by
moving the gradiometer up and down on a tower above a plain.

1. INTRODUCTION

Various light-mass bosons have been proposed to explain inconsistencies in particle physics
and gravity. The existence of these bosons, which may represent a "fifth force”, would give
rise to a Yukawa-type potential and appear as a violation of the inverse-square law. The total

potential would have the form:
&(r) = -GMJr [1+aexp(-r/A)] (1)

where o and A are the dimensionless coupling constant and the range of the Yukawa
potential.

Numerous experiments have been performed to search for such a violation (Adelberger et al.
1992, Fischbach and Talmadge 1992). Most of these experiments have involved searches for
non-Newtonian gravitational acceleration from near-null sources by employing torsion

157




balances, beam balances, or commercial gravimeters as detectors. Our experiment is unique
in that it employs a new instrument, a three-axis superconducting gravity gradiometer (SGG),
and is based on a new approach, a test of Gauss's law for gravity.

Gauss's law for the Newtonian field,
Vg=-4nGp (2)

is a differential equivalent of the inverse-square force law. Here £ =-V¢ and p is the local
mass density. Outside a source (p = 0), V-g must vanish regardless of the source geometry
and density homogeneity. Therefore, summing the outputs of an in-line gravity gradiometer
rotated into three orthogonal directions produces a null test of the inverse-square law. The
primary advantage of this experiment is its relative insensitivity to the source density and
metrology errors (Paik 1979).

We have performed a laboratory test of the inverse-square law and improved the limit in the
resolution of o by a factor of 10 at the range of 1.5 m. The full advantage of the new
approach will be realized in a geological-scale experiment, which usually involves a natural
source whose density and shape are irregular. The experiment reported here is a stepping
stone toward more advanced laboratory and geological-scale experiments with the SGG.

2. DESCRIPTION OF THE EXPERIMENT
The source used in this experiment was a 1498 kg lead (Pb) pendulum confined to a single

plane of motion by a shaft and bearings at the pivot. The length of the pendulum is 3.300 +
0.005 m. Figure 1 shows a schematic of the experiment.

=/

AN
v/(L

Figure 1. The source-detector configuration in the experiment. Here s is 4.234 m, h is 4.583
m, and the gradiometer baseline, /, is 0.1905 m.
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Each axis of the SGG consists of two CANTILEVER SPRING
spring-mass accelerometers in which \ /

//////////}—

the proof masses are confined to L,
- motion in a single degree of freedom r——-' L13114 5 sk uuww ————yq

along a common axis, and are coupled : :
together by superconducting circuits | 1
(see Figure 2). Platform motions I, tl m, :
appear as common-mode accelerations { / |
and are canceled by adjusting the ratio | :
of two persistent currents (/;, and ;) r-}-.—_\ a00042 ‘.. 73 200209 ,._...'_l...
in the sensing circuit. The sensing I — T / / e {
circuit is connected to a commercial 1) — 000 - 000 - |
SQUID amplifier to sense changes in : | 1 I | P Ls |
the persistent currents generated by I : dl —_— ~Lg =
differential accelerations, i.e., gravity | | O I
gradients. The design and analysis of } | J |
this gradiometer have been published || Is2 SQUID I 1
(Moody et al. 1986, Paik 1993). Io “ : —V////;;///]J-ES- }
I
A three-axis gradiometer is formed by : S "v5535\ L 7e5uE “"L—z‘-—J |
mounting six accelerometers on the | I
faces of a precision cube. The :
accelerometers on any two opposite | mz
faces of the cube form one of three in- { / |
line gradiometers. Aligning the | |
L noGeoe ,._._..__.I

diagonal of the cube with the vertical ————aR2%23%%s N
equally biases the three gradiometer B e,
axes with respect to the Earth's
gravitational acceleration. This . Y .
: . - . Figure 2. Schematic circuit diagram of one axis of
umrella orientation" also permits the
.. . the SGG.
cyclic interchange of the gradiometer
axes by a 120° rotation about the

vertical.

Ls

The three-axis SGG is cooled to 4.2 K inside a liquid helium cryostat. The cryostat sits on
an automated turntable, which rotates the gradiometer axes about the vertical. Voice-coil
shakers for vertical acceleration and tilt as well as optical tilt sensors are provided in the
cryostat to balance common-mode accelerations and measure various dynamic error

coefficients.

To increase the resolution of the inverse-square law test in the laboratory, the source should
be brought close to the gradiometer. However, as the ratio of the gradiometer baseline to the
source-detector separation increases, the finite baseline effect, which results from higher
moments of the gradiometer coupling to higher-order field gradients (Chan and Paik 1987),
becomes significant, and metrological errors become more important. This effect, along with
the error in the source metrology, establishes a lower limit on the source-detector separation.
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3. DISCUSSION OF ERRORS IN THE NULL EXPERIMENT

An ideal gradiometer does not couple to acceleration; however, in reality, misalignment of the
sensitive axes of the component accelerometers results in residual coupling to platform
motion. A misalignment in the parallelism of the accelerometer sensitive axes couples to
translational acceleration, and a misalignment in the concentricity of the sensitive axes
couples to angular acceleration (Chan and Paik 1987). The errors in sensitive axes alignment
also cause a misorientation of the gradiometer axes. This misorientation gives rise to an error
in orthogonality among the three in-line gradiometers and among the cyclic orientations for an
individual gradiometer axis. The orthogonality error results in coupling to cross-component
gravity gradients.

One can show that, after summing over the three cyclic orientations, only the vertical
components of these error terms remain (Parke 1990):

Y IP=(1+€)(3/3ET-H(8%,9) +2Q¢-§[3(n-z)z—m](zsf,-z+az}-£) -

SQDGTeny2)-2Frg) 20, 2+0h /)

where I' = -VV¢ is the gravity gradient tensor; r and Q are the linear position and angular
velocity vectors of the platform; #, is the sensitive axis of the i-th gradiometer; 5#, 5%, and
3%, are misalignment vectors from parallelism, concentricity, and proper umbrella angle; 2 is -
the unit vector in the vertical direction; 64, is the scale factor mismatch; respectively. In
particular, the orthogonality error, 6%,, couples to the vertical component of the gravity
gradient, I';,. For the pendulum source, the fundamental component of I',, was made to
vanish by choosing the source-detector orientation shown in Figure 1.

By confining the data analysis to the fundamental of the pendulum frequency, the error due to
direct coupling of the gradiometer to the source-generated linear acceleration of the building
was also eliminated. This error removal was possible because the vertical component of this
acceleration is limited to the second and other even harmonics. For the fundamental and odd
harmonics, the acceleration of the building, which is in the horizontal plane, canceled upon
summation over the three cyclic orientations.

The pendulum produces a vertical as well as horizontal components of angular acceleration of
the floor at its fundamental frequency. To remove the angular acceleration error, the vertical
component of angular acceleration and the corresponding error coefficient must be measured.
A ring laser gyro (RLG), mounted directly to the turntable with its sensitive axis aligned with
the vertical, was used for the acceleration measurement. The error coefficient was measured
by shaking the SGG about the vertical axis.

An error in the experiment also arises from a displacement of the center of mass of the SGG

upon the 120° rotations, 6r. This error can be minimized by choosing an optimum value for
the initial SGG azimuthal angle. This error and the error due to an uncertainty in the
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azimuthal angle of the gradiometer can be reduced to second order effects by summing the
signals of the three gradiometer axes, i.e., by averaging over three concurrent measurements
of V- g (Parke 1990). This was not possible in the present experiment due to malfunctioning
- of one axis, causing a first-order error in r.

The final error we need to discuss is centrifugal acceleration. The SGG, like all other gravity
gradiometers, is inherently sensitive to this error. However, the centrifugal acceleration
generates a velocity term, which is in quadrature with the acceleration terms. This error term
is rejected by phase-sensitive detection.

4. EXPERIMENTAL RESULTS

For the experiment, the three gradient and i :
three acceleration outputs from the SGG '

were recorded along with the pendulum (1)
position for 33 nights. The turntable was MUM I
automatically rotated 120° twice each
night. After time-averaging the 33 data
sets, the data is Fourier-transformed to
identify the fundamental component.
Because of a faulty superconducting joint

in the circuit of one axis, the analysis of
the data was limited to the other two axes.

-t
o

oo

10°s?)

Figure 3 shows the output of axis 1 for
each of the three orientations and their
sum. The time axis covers six cycles of
the pendulum. The contamination of

3.I,? is mainly in even harmonics, as N RN AAN AN 2r
expected from the source-induced vertical 0 5 10 15 20
acceleration of the floor. In addition, the TIME (s)

induced torsional motion of the floor .

caused an error term at the fundamental
signal frequency. Subtracting the term
due to the torsional angular acceleration
and the finite baseline term gives our final
result of (0.58 £ 3.10) x 10 E, a null
result, where 1 E = 10 s and the
uncertainty represents a 20 error.

GRAVITY GRADIENT (E

Figure 3. The output of axis 1 of the SGG for
each of the three orientations and their sum. The
dc level is arbitrary.

The error budget for this result is given in Table I. The random noise comes from the scatter
of the XTI, data. The main contributors to this random noise are the SQUID noise and the -
residual angular acceleration, which couples to the gradiometer through a misalignment of the
sensitive axes. The gradiometer rotation axis error represents an upper limit corresponding to
the worst case in the direction and magnitude of 8». The axis non-orthogonality error is
calculated by assuming the maximum error in the polar angle, 0.001 rad. The residual
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Error Source 26 Level

Random 2.48x10* E
Gradiometer Rotation Axis <0.95x10“ E
Gradiometer Axis Non-orthogonality <0.40x10* E
Residual Torsional Acceleration 1.12x10* E
Source Metrology 1.08x10* E
Magnetic Coupling <107’ E
Total 3.1x10“ E

Table 1. DOMINANT ERRORS

torsional acceleration error comes from the scatter of the RLG data. The source metrology
error arises from the uncertainties in the geometric parameters of the experiment.

The strictest limits on the

Yukawa coupling constant are 10"
o= (0.9 +46) x 10 at

A = 1.5 m, where the
uncertainty represents a 26
error. This represents an
improvement of more than two
orders of magnitude over our

102

previous result (Chan et al. 10°

1982) and an order of mag- & previous ]
nitude over the best existing seG

limit at A = 1 m (Hoskins et 10* ¢ E

al. 1985, Muller et al. 1989). { ‘

Figure 4 shows the 1o limit 10% -:
on a versus A set by our 5
experiment (solid line), in [ SGG + null source ]
contrast to the limits obtained 10° Lo i el .
by previous experiments 102 10 10° 10! 102 10°
(shaded area). The expected

resolution of a future SGG RANGE A (m)

experiment with a laboratory

null source, which will be Figure 4. 1c limit on the Yukawa coupling constant set by

fllscussed in the next section, this experiment in contrast to the limits obtained by other
is shown by a dotted line. experiments.
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5. FUTURE EXPERIMENTS

Substantial improvement in the resolution of o on the sub-meter distance scale will require
_significant advancements in the SGG or in the source. Incorporating an approximately null
gravity source into the experiment would reduce the errors which couple to gravity itself and
allow the source to be brought much closer to the detector.

Unlike the pendulum experiment in which the data was recorded continuously and Fourier
analyzed, the null source experiment would require that the data be recorded only when the
detector is in the null regions of the source. Hence, any signal, or error, would appear as a
square wave. Since the data is only recorded when the source is stationary, dynamic coupling
is eliminated. However, such an experiment must be done at frequencies sufficiently low as
to be in the red noise region of the SGG (< 0.05 Hz). We are currently making
improvements to the SGG in an effort to suppress the low-frequency noise.

An infinite cylindrical shell is a well-known null source
for a 1/r potential. By making the mass distribution a
function of the axial coordinate, while maintaining
cylindrical symmetry, a near-null source of moderate
dimensions can be designed. Initial calculations have
shown that a cylinder with a sufficiently null region about
its center can be made using a height-to-diameter ratio of 2
(see Figure 5). However, such a source would have to be
more than 5 diameters away from the detector at the far
position for its Newtonian field to become sufficiently
weak. The dimensions of our laboratory disallow such an
experiment given the present detector dimensions.
Consequently, we are in the process of designing a
cylindrical source with additional null regions near its
ends. By modulating between these three regions, we
expect to achieve a resolution of 10° in a at A ~ 0.2 m.
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Improving the resolution in a at larger ranges will require
a geological-scale source. Such an experiment could be
realized by mounting the SGG on a large turntable in the
vicinity of a cliff, or in an SGG tower experiment. These
experiments have the potential to improve the resolution in
o to 107 around A ~ 100 m. Such experiments require the
Figure 5. A preliminary design  detector to be on a moving platform and be able to suffer
of a null gravity source. the dynamics of this platform. This is a significant step
from the present experiment where the SGG is stationary
in the laboratory.

In addition to the improved laboratory test of the inverse-square law, we are developing a
program to test the SGG on an aircraft in preparation for airborne gravity survey. For such
moving-base application, additional compensation needs to be provided for the gradiometer
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errors arising from coupling to the linear and angular accelerations of the platform. Once the
SGG 1s flight-qualified, it could be used as a detector in a cliff or a tower experiment.

The Yukawa signal at a height z above a plain can be shown (Chan and Paik 1984) to be
V-g=-2nGpaexp(-z/A) )

for A small compared to the radius of the Earth, where p is the mass density of the Earth near
the surface. If z is modulated from 0 to at least 2A, the peak-to-peak signal is about 1000 o
E. A resolution of o = 10”° would then be achieved by an SGG with a noise level of 0.5 E
Hz'?, the initial goal for the airborne SGG, in an integration time of 10° s.

6. CONCLUSIONS

A Gauss's law test for gravity has been designed and carried out (Moody and Paik 1993).
The experiment employs a new instrument, a three-axis superconducting gravity gradiometer.
The result represents an improvement of an order of magnitude over the best existing limit at
A =1.5m. Table I shows that the total error with the pendulum source could be reduced by
a factor of 3 by improving the random noise of the gradiometer and the gyroscope used to
remove the residual torsional motion error. A much more substantial improvement on the
result can be achieved with the construction of an improved source. A laboratory experiment
with a near-null source and a geological-scale experiment on a tower are planned.
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